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An Empirical Evaluation of Interest
Point Detectors

IÑIGO BARANDIARAN1,2, MANUEL GRAÑA1, and
MARCOS NIETO2

1Grupo Inteligencia Computacional (GIC), Department of CCIA, UPV=EHU, 20018,

San Sebastian, Spain
2Vicomtech-IK4, 20009, San Sebastian, Spain

Image interest point extraction and matching across images is a
commonplace task in computer vision–based applications, across
widely diverse domains, such as 3D reconstruction, augmented
reality, or tracking. We present an empirical evaluation of state-of-
the-art interest point detection algorithms measuring several para-
meters, such as efficiency, robustness to image domain geometric
transformations—that is, similarity—affine or projective transfor-
mations, as well as invariance to photometric transformations such
as light intensity or image noise.

KEYWORDS computer vision, feature descriptors, interest points,
point matching

INTRODUCTION

Image analysis and computer vision–based applications deal with extraction
of information from the images acquired by a camera sensor. Often, this
information has a local representation in the form of selected pixels or set
of pixels (regions) having relevant distinctiveness or discriminative character-
istics. These relevant regions retain more information about the structures in
the scene than surrounding neighboring regions.

In the literature, feature points, key points, or features are synonymous
terms for the image interest points. In the last decade, there has been a lot
of progress on interest point extraction algorithms used to build image and
video descriptors leading to substantial advances in many computer vision
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areas, which include 3D reconstruction, motion estimation, image registration,
matching, and retrieval, or object and action recognition, needed at the first
stages of many computer vision algorithm pipelines. Therefore, they can be
considered as low-level image descriptors whose information is then deliv-
ered to other processes, in a bottom-up manner, until some kind of semantic
knowledge or high-level interpretation is reached.

In this article we give the results of extensive empirical evaluation
experiments measuring the behavior of several state-of-the-art interest point
detection algorithms. This evaluation can be useful to help the research
community improve their interest point extraction and feature descriptor
approaches. In addition, practitioners of computer vision applications based
on image point matching can obtain valuable information in this article to
select the algorithm that best suits their needs.

The remainder of the article is organized as follows: Firstly, a general
overview of interest point detectors is provided. Secondly, a description of
each detection algorithm as well as the experimental framework and data
sets used during the evaluation is provided. Thirdly, details on the results
obtained during the evaluation are given. Finally, in the last section a general
discussion about evaluated interest point detectors and some conclusions are
provided.

METHODS

A recent exhaustive review of interest point detectors can be found in
Tuytelaars and Mikolajczyk (2008), which describes and evaluates several
affine region detectors. The authors identified the most relevant interest point
detector performance measures:

. Repeatability: The same interest point should be extracted by the same
detector even after geometric and=or photometric image transformations.

. Distinctiveness: Detected interest points should be different enough in
order to be identified or matched, and the same interest point should
not vary too much between different images of the same scene area.

. Quantity: Measures the number and distribution of interest points that a
detector is able to extract from an image or set of images.

. Efficiency: Measures the computational cost in time and memory that an
interest point detector needs to process an image.

It is worth noticing that the relative importance of these measures is
application dependent; that is, every computer vision application or image
analysis has different detection needs. For real-time optical tracking
(Barandiaran et al. 2010) quantity and efficiency measures are critical,
whereas for on-line object recognition, repeatability and distinctiveness are
more relevant.
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Nevertheless, the mentioned performance features can be reduced to
two: quality and efficiency. Detector quality measures the ability of a detector
to provide an accurate, precise, dense, and robust set of points to the next
process in the image analysis pipeline. Detector efficiency measures how fast
the interest point extraction is performed and which computational resources
are required to carry out the task. Depending on these performance results,
the ensuing processes in the pipeline should or should not need to apply
further mechanisms such as filters, estimators, or heuristics in order for the
application to succeed, or run efficiently and obtain accurate results.

Evaluation Data

In order for an interest point to be correctly identified from one image to
another, the extraction algorithm must be transform invariant or covariant
(Mikolajczyk et al. 2005); that is, robust to any type of image transformation
categorized into two different classes: geometric and photometric transfor-
mations. In general, geometric transformations are those that modify the
shape or the location of an interest point in the image space, usually gener-
ated by a change in the position and=or orientation of the objects in the
scene or by a change in the point of view of the camera. On the other hand,
photometric transformations influence the image feature appearance—that
is, the intensity or color value of the pixels—due to changes in light con-
ditions in the scene; the intrinsic parameters of the camera hardware, mainly
the camera sensor; or a change in the acquisition parameters of the camera.

In the current detector evaluation we use several sets of images showing
both geometric and photometric transformations. First, we use a data set
proposed in Mikolajczyk et al. (2005) composed of three different sets of
six images each, showing rotation, scaling, and perspective transformations
as displayed in Figure 1.

FIGURE 1 Sample images from graffiti (left), boat (center), and brick (right) data sets from
Mikolajczyk et al. (2005) (color figure available online).
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In addition to these data sets, we use a collection of synthetic images
generated by a tool proposed in Barandiaran et al. (2013). New transformed
images are generated given an input image and a known geometric or photo-
metric transformation between images. This tool allows us to generate
new transformed images by applying similarities—that is, translations,
rotations, or isotropic scaling transformations, as well as more general affine
transformations.

Finally, the experimental data suite includes two data sets proposed in
Barandiaran et al. (2013) containing photometric transformations.

Matching Evaluation

Image formation is modeled as in Eq. (1):

xi ¼ PXw; ð1Þ

where Xw and xi represent world points and their point projections in the
image, respectively, and P represents the projection matrix, described in
Eq. (2),

P ¼ K ½Rjt�; ð2Þ

where K describes the transformation from the camera reference frame to the
image reference frame, and [Rjt] denotes the composition of a translation and
a rotation transformation between world and camera coordinate systems.

The transformation between image points is given by a 2D linear projec-
tive transformation, aka homography (Hartley and Zisserman 2004), in the
following situations: (a) world points Xw lie on a plane, so that the homogra-
phy maps them into image points xi, or (b) images are acquired by a camera
rotating around its center of projection, so that the homography maps points
xi extracted from one image into points xj extracted from another image of
the same plane.

In the data set from Mikolajczyk et al. (2005) as well as in the one from
Barandiaran et al. (2013), all images are related by a 2D homography HabD.
This a priori known transformation is used as the ground truth data, allowing
to compute using Eq. (3) a priori predictions of where a point xiaD, from
image a of data set D, will be projected in image b of the same data set.

xjbD ¼ HabDxiaD ð3Þ

Similarly, points extracted from image b can be projected back to image
a by application of the inverse of HabD. Let ~xxjbD be the estimated match of

point xiaD in image b obtained by the point detector algorithm. We use the
knowledge of transformation HabD to measure the accuracy and repeatability
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of a point detector algorithm, computing the Euclidean distance d between
the estimated and the ground truth points of a pair of images, as specified
in Eq. (4):

dij ¼ d ~xxjbD;HxiaD
� �2 þ d xiaD;H

�1~xxjbD

� �2 ð4Þ

To identify the correct matches mab among all potential matches shown
in Figure 2—that is, point pairs xia and ~xxjb extracted from images a and b,

respectively—we used the overlap error of Eq. (5) as proposed in Mikolajczyk
and Schmid (2002).

This error measures the correspondence under the known homographic
transformation of two supporting regions, usually ellipses or circles Ria and
Rjb, extracted around detected and projected interest points xia and ~xxjb,
respectively. In our evaluation we consider a maximum 40% overlap error
for a candidate pair of points to be considered as a potential true match.

es ¼ 1� Ria \ HTRjbH

Ria [ HTRjbH

� �
ð5Þ

A pair of points xia and ~xxjb whose Euclidean distance dij given by Eq. (4)

and overlap error given by Eq. (5) are below set thresholds is considered a
true match. We calculate the overlap between interest point neighbor ellipses
by using software from Hughes and Chraibi (2011).

In the reported evaluation, we used estimated true matches to compute
the repeatability score of a given interest point detector. The repeatability
score for a given pair of images a and b (Mikolajczyk et al. 2005) was
computed as the ratio between the number of point-to-point true correspon-
dences and the minimum number of extracted points in the pair of images.
Before computation of the repeatability score, we filtered out non-common
points in both images, taking into account only parts of the scene present in

FIGURE 2 Correct and wrong matches between image a (left) and image b (right) (color
figure available online).
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both images. This filtering was applied using the a priori ground truth
homography between both images.

Point Detectors

We have included in our evaluation most of the point detectors of the current
state-of-the-art as well as a classical approach that today is still broadly used
in the computer vision community. In the following section, a brief descrip-
tion of each point detector included in the evaluation is given.

. HARRIS Detector: The Harris corner detector is one of the feature extractors
most commonly used by the computer vision community (Harris and
Stephens 1988). Harris’s approach improves Moravec’s detector (Moravec
1977) by taking into consideration different orientations around the candi-
date pixel instead of shifting patches, by computing the second moment
matrix, also called the autocorrelation matrix. Harris’s cornerness measure-
ment is still used by many point extractor approaches for non-maxima
suppression. In this evaluation we have used a pyramidal version of Harris
proposed in Mikolajczyk and Schmid (2001).

. Scale Invariant Feature Transformation (SIFT) Detector: This descriptor
proposed by Lowe (1999) is one of the most successful approaches for
interest point extraction and description to date. Detection is based on
the convolution of images with a difference of Gaussian (DoG) operator
g¼ (gr� gr0). Convolved images are arranged in a pyramidal represen-
tation, where each level (octave) of the pyramid is a downsampled and
smoothed version of the image in the previous level. Smoothed images
are obtained by convolving with a Gaussian operator with different values
of scale r. This arrangement of images allows SIFT to work in a scale-space
representation (Lindeberg 1993). The SIFT detector and descriptor are
designed to be invariant to rotation and scale transformations, but not to
perspective transformation.

. Speed Up Robust Feature (SURF) Detector: This extractor (Bay et al. 2006)
follows a similar approach to SIFT, explicitly addressing the problem of
reducing computation cost. SURF searches for local maxima of the Hessian
determinant in the scale space. SURF calculates Hessian determinants
efficiently by using a discrete approximation of the Gaussian second-order
partial derivatives, in conjunction with integral image representation (Viola
and Jones 2004). Different from the SIFT approach, the scale estimation is
not obtained by decreasing the image size after smoothing but by increas-
ing the size of the discrete kernels.

. FAST Detector: This detector proposed in Rosten et al. (2010) follows a dif-
ferent approach than SIFT or SURF detectors. FAST uses supervised classi-
fication to label pixels as members of the class ‘‘interest point’’ or the class
‘‘background’’ by examining the values of pixels surrounding a candidate
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point in a circular path, as illustrated in Figure 3. A feature is detected at
pixel p if the intensities of at least n contiguous pixels of a surrounding cir-
cle of j pixels are all below or above the intensity of p by some threshold t.
The original FAST approach does not perform scale-space representation.

. BRISK Detector: Proposed in Leutenegger et al. (2011), this detector
implements a modification of the FAST detector proposed in Mair et al.
(2010) that improves the original FAST score computation by changing
the original classifier to a binary decision tree. The BRISK detector tries
to overcome the limitations of the FAST detector regarding scale robust-
ness by computing the FAST score over several octaves in a scale-space
representation.

. Maximally Stable Extremal Regions (MSER) Detector: This detector
proposed in Matas et al. (2002) is an approach based on the detection of
blob-like structures. MSER detects blobs by using local luminance extrema,
obtained by iteratively applying watershed-based segmentation. A region
Ri is considered stable and, therefore, a potential feature if for all its n
joined connected components R1, . . . , Rn, obtained after n watershed seg-

mentations, reaches a local minimum in the function qi ¼
Rðiþ/Þ�Rði�/Þj j

jRij
where a is a user-defined parameter and the operator j�j represents the
cardinality of the blob measured in pixels. The MSER detector is by defi-
nition covariant to affine transformations.

. STAR Detector: This point extractor is also known as Center Surround
Extrema (Censure; Agrawal et al. 2008). This approach approximates the
Laplacian using bilevel center-surround filters of different shapes such as
boxes, octagons, or hexagons. The computation of these filters in combi-
nation with integral images allows the detection of interest points in
scale-space much faster than SIFT. In our evaluations we used a bilevel
star-shaped filter as proposed and implemented in Bradski (2000).

FIGURE 3 FAST local detector (Rosten et al. 2010).
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. ORB Detector: This algorithm proposed in Rublee et al. (2011) is a modified
version of the FAST detector for computing orientation during detection
step and an efficient computation of a BRIEF-based approach for generat-
ing descriptors. This approach tries to merge the rotation and scale invar-
iance of SIFT and the computational efficiency of FAST detector.

. KAZE Detector: Introduced in Fernández et al. (2012), this detector pro-
poses a novel multiscale interest point detection, where common linear
scale decomposition with Gaussian filtering, used in several approaches
such as SIFT, SURF, BRISK, or pyramidal HARRIS, is changed by a non-
linear diffusion filtering. This type of filtering smoothes images similarly
to Gaussians but better preserves region boundaries.

EVALUATION

This section shows the results obtained in different tests we carried out fol-
lowing the experimental framework proposed in Barandiaran et al. (2013).
This framework allows estimating several performance measures of interest
point detectors such as repeatability score, detection accuracy, and compu-
tation time. We evaluated the behavior of interest point detectors described
in the previous section as implemented using OpenCV Library version 2.4
(Bradski 2000), running entirely in the central processing unit (not using
the computer’s graphics processing unit). We set all of the specific detectors’
parameters to their default values, as suggested by their authors.

Detection Density Evaluation

A detection density test compares the number of interest points that each
detector is able to extract. Depending on the specificities of each algorithm,
the number of extracted points may vary significantly, even if they are
applied on the same image. Furthermore, depending on the image spatial
frequencies, the number of detected points can differ. We used three differ-
ent sets of images having different contents and therefore different textures
and spatial frequencies. For example, images from the graffiti data set exhibit
well-defined smooth and homogeneous regions, whereas images from the
brick data set show highly frequent repeatable patterns. All tests were carried
out limiting the maximum number of detections to 6,000.

Table 1 contains the density detection results of all tested detectors over
the graffiti, boat, and brick data sets. The ORB and FAST detectors detected
the most dense clouds of interest points, followed by KAZE. The ORB detec-
tor seemed to always reach the maximum number of detections allowed, in
this case 6000, independent of the image content. This tended to generate
very close detection of points or clusters, which may have a negative impact
in some applications such as camera tracking. Similarly, a high number of
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detections were obtained with the KAZE detector; however, points detected
by KAZE were more uniformly distributed over the image domain than
points detected by ORB or FAST. It is worth mentioning that the MSER
approach generated the lowest number of detections. A very small number
of detections can limit the usefulness of the detectors in some applications
such as simultaneous location and mapping (SLAM) or 3D reconstruction,
where dense detections are preferable. Finally, we remind the reader that
the number of points detected is not the only measure for a successful detec-
tor; how discriminative and repeatable they are against some transformations
such as geometric or photometric ones is also important.

Invariance to Geometric Transformations Evaluation

In this section we describe the results evaluating the robustness against
rotation and scale similarity transformations, affinity transformation, and per-
spective transformations.

ROTATION SIMILARITY TRANSFORMATION

In this test we evaluated how different approaches are robust against image
rotation. We used the first image from the graffiti data set along with the tool
described in Barandiaran et al. (2013) to generate rotated images by applying
different angles of in-plane rotation similarity, starting from 0 degrees (same
image) to 360 degrees in steps of 7.2 degrees.

The results depicted in Figure 4 show that some detectors such as SIFT
or MSER are almost insensitive to in-plane rotation transformation, obtaining
an almost constant value of 70% repeatability along the whole transformation
range. ORB is also insensitive to transformation but its repeatability values
are lower than those of SIFT and MSER, around 55%. Some detectors such
as KAZE and, in particular, SURF show high sensitivity to specific in-plane
rotation values like 45, 90, 135, 180, 225, or 270 degrees. In the case of SURF
we attribute this sensitivity to discretization effects induced by the use of box
filters as approximations of the LoG operators. It is worth noticing that the
FAST detector, despite its simplicity, obtains good results along the trans-
formation range, generating the best results, together with STAR and KAZE
detectors, when image rotation is exactly 180 degrees (upside-down image).
The remaining detectors estimate a dominant orientation in the supporting

TABLE 1 Density Results

SIFT SURF BRISK ORB FAST HARRIS MSER STAR KAZE

Graffiti 1,108 2,505 1,080 6000 5,759 699 555 874 5,209
Boat 1,451 4,088 3,691 6000 4,850 3,426 192 1,923 5,209
Brick 1,821 5,371 1,511 6000 5,458 5,571 1,447 1,461 5,209
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region around each interest point, allowing the image to be rotated back or
rectified, in order to obtain robustness to rotation transformation. The FAST
detector only evaluates some pixels (from 9 to 16) around an interest point
without the need for dominant rotation estimation and correction and thus
is computationally optimal.

SCALE SIMILARITY TRANSFORMATION

We again used the first image from the graffiti data set to generate new
isotropically scaled views of that image. More precisely, we generated 50
images with a range of scale factors from 0.04 to 2.4. Scale values below 1
indicate augmentation of image structures, and values above 1 indicate a
reduction.

Figure 5 plots the repeatability results in this experiment. Clearly, the
SIFT detector shows superior results when the value of scale factor trans-
formation is extreme, because it is robust even with scale factors higher than
2. In addition, MSER and BRISK obtained good results, performing better
than SIFT for scale factors lower than 1; that is, when images are augmented
versions of the original one or the camera is moving closer to the scene, so
the apparent size of the objects appears to increase. Finally, it is worth men-
tioning that the FAST detector is not invariant to scale transformations, given
results for repeatability close to 0 when scale factors are outside the range
0.65–1.25.

FIGURE 4 Invariance to rotation transformation measured by repeatability results on the first
image from the graffiti data set (color figure available online).
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AFFINE TRANSFORMATION

In addition to the most general transformations (projectivities), affine trans-
formations are the most interesting transformations modeling a change in
the camera’s viewpoint. They are very useful in several contexts such as
SLAM or camera tracking. In this test, we used 50 generated images by apply-
ing affine deformation (nonuniform scaling and skew) in the x direction from
image 0 to image 25 and then in the y direction from image 26 (most distorted
image) to 50 (original image). The results shown in Figure 6 demonstrate that
none of the detectors is fully invariant to affine transformation but all of them
perform robustly. The KAZE detector obtained the best results, achieving
85% on average along the transformation range.

PERSPECTIVE TRANSFORMATION

In the following test we evaluated robustness against homography projective
transformation. The projective transformation between any two images of the
same planar structure in space can be described by a homography transform-
ation. Homography transformation estimation is widely used by the computer
vision community in many applications such as image rectification, image
registration, camera calibration, or camera pose estimation. In the current test,
we used the first four images from the graffiti data set to measure the repeat-
ability score between image 1 (reference) and the other three images. We left

FIGURE 5 Invariance to scale transformation measured by repeatability results on the first
image from the graffiti data set (color figure available online).
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out the last two images of the data set because the perspective distortion
between the reference image and these images was too severe. This distortion
limited the applicability of each detector because they were unable to extract
a significantly high number of stable interest points; thus the repeatability
scores were not very reliable.

The results in Figure 7 show that none of the tested detectors was truly
invariant to perspective transformation. BRISK and ORB achieved the best
results, followed by KAZE. In general, the repeatability scores in this test
were lower than in the rest of tests, meaning that the detectors were very
sensitive to perspective transformations and distortions. All of the current
approaches propose to extract interest points and descriptors to be invariant
to affine geometric transformation because projectivities are too general and
thus have too many degrees of freedom. Moreover, when distortion gener-
ated by perspective transformation is not very high, this transformation can
be locally approximated by an affinity. Therefore, affine invariant detectors
such as MSER can be robust against small perspective transformations.

Invariance to Photometric Transformations Evaluation

In addition to geometric transformations, we carried out an evaluation of the
robustness of the described interest point detectors against photometric
transformations.

FIGURE 6 Invariance to affine transformations measured by repeatability results (color figure
available online).
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EXPOSURE PHOTOMETRIC TRANSFORMATION

This test evaluates the robustness of the detectors against variations of light
intensity. We used the data set proposed in Barandiaran et al. (2013) consist-
ing of 15 images captured in controlled light conditions. The light was modi-
fied from a correct scene exposition to around 4.5 f-stops less of exposure, in
steps of 1=3 f-stop. Sample images are shown in Figure 8.

The results obtained with this data set suggest that light intensity varia-
tions affect each detector. As the light decreased, the repeatability scores for
each detector also decreased. The most stable results were obtained by
BRIEF and SURF, followed by MSER. As shown in Figure 9, as the light inten-
sity decreased the number of detections achieved by each detector also
decreased with the exception of BRIEF. When the light intensity was reduced

FIGURE 8 Sample images of photometric exposure transformation data set (color figure
available online).

FIGURE 7 Invariance to projectivity transformation results measured by repeatability results
(color figure available online).
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to around 3 f-stops, the number of detections achieved by each detector was
reduced to less than 50% of the total number of detections with correct
exposure. As described previously, the BRIEF detector is based on the com-
putation of relative pixel intensity differences. Clearly, this approach is robust
and invariant to linear intensity light variations.

NOISE PHOTOMETRIC TRANSFORMATION

We also evaluated the robustness of interest point detector algorithms against
image noise. The current evaluation deals with approaches using image
intensity only and thus no color information. We used a data set composed
of 15 images that progressively contaminates input image with luminance
additive Gaussian distributed noise as shown in Figure 10.

Contrary to the previous experiment, the number of detections for each
approach increased as image noise increased. This was due to the addition of
spurious data that generated new responses while computing image deriva-
tives. These spurious data caused new false responses (interest points)

FIGURE 10 Detail of two images with different signal-to-noise ratios (color figure available
online).

FIGURE 9 Exposure data set repeatability score (left) and number of detections (right) (color
figure available online).
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during the search of local maxima or minima over different scales. Despite
the number of detections, clearly these false interest points were not stable;
thus, repeatability scores continuously decreased as image noise increased,
as depicted in Figure 11. The most stable detector against image noise was
BRISK followed by ORB, but all followed the same trend. None of the tested
detectors was fully robust to luminance image noise.

BLURRING PHOTOMETRIC TRANSFORMATION

This test measures the robustness against image blurring. This photometric
transformation may occur due to fast camera movements or by a change
on the lens focus point. We used a data set consisting of 15 real images where
the lens focus point was modified from a perfectly in-focus image to a com-
pletely out-of-focus image.

The results for repeatability and detection density are depicted in
Figure 12, which shows that as image blurring increased the number of detec-
tion decreased; in some cases—for example, using BRISK—this reduction was
severe. Each detector uses some type of image blurring, usually through
Gaussian functions, prior to interest point detection in either a single or multi-
scale approach. The most stable detectors were BRISK, ORB, and SURF. It is
worth noting that some approaches such as FAST, SIFT, and HARRIS are very
sensitive to this type of transformation and thus showed the worst results in
this evaluation.

FIGURE 11 Robustness to additive noise measured by repeatability results (color figure
available online).
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Efficiency Evaluation

This test evaluates the execution times that each detector needs to perform
interest point detection in one image. We measured each algorithm by using
the six images from the graffiti data set. We used an Intel i5 Quad Core
2.5GHz with 4 GB of memory.

As in the density test, we set the maximum number of detections to each
particular approach to 6,000; thus, each detector was allowed to extract the
maximum number of points possible. The results displayed in Figure 13 show
clearly that the KAZE feature detector was the slowest method used in this
evaluation. The process of computing nonlinear diffusion filtering in several
scales is a time-consuming task. The fastest approach for this comparison

FIGURE 13 Average execution times of interest point detectors (measured in milliseconds;
lower is better) (color figure available online).

FIGURE 12 Blurring robustness measured by repeatability results (left) and number of
detections (right) (color figure available online).
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was BRISK, followed very closely by BRIEF and STAR. These approaches
along with ORB and HARRIS are suitable for real-time operations.

DISCUSSION

The results in the previous section confirmed that no single interest point
detector clearly outperforms the rest of the approaches in all situations. In
some tests one particular detector performed better than the others but did
not perform as well in other tests. In general, the best approach is the one that
provides the best fit for the specific application requirements. For example,
the SURF approach performs similar to SIFT, generating more dense interest
points, and is computationally faster but suffers from rotation sensitivity,
showing irregular results along the rotation transformation range. If our parti-
cular application does not expect severe camera or object rotation, SURF can
be a perfect alternative to SIFT. Otherwise, if rotations are expected, ORB is a
much better option. The ORB detector showed a good trade-off between
repeatability in several tests and computational efficiency; however, we
observed that the spatial locations of the interest points were usually clustered
in very close spatial locations. This spatial clustering may result in the descrip-
tors extracted from such regions not being distinctive enough to effectively
perform discriminative matches across images. Conversely, the BRISK detec-
tor showed similar robustness measure responses compared to ORB and is
computationally faster and, more important, generates much more uniform
spatially distributed and stable interest points. The weakest aspect of BRISK
in our results is its sensitivity to light intensity changes. Both the number of
detections and the repeatability scores decreased drastically as light intensity
decreased. Fortunately, the number of computer vision scenarios with such a
difference in light exposure is limited, mainly appearing in applications
related to outdoor tracking or SLAM, where light conditions are not controlled
and may vary significantly from image to image.

Affine transformation robustness is a very important measure, because
projective transformations can be locally approximated by an affine trans-
formation. The KAZE and MSER detectors achieved very good robustness
results. Despite MSER’s robustness to affine transformation, we observed that
this approach tended to generate a low number of detections because it
requires extensive, well-defined homogeneous regions. This feature can be
a serious limitation in many real practical applications.

In addition to robustness to affine transformation, invariance to scale
geometric transformation is a critical aspect regarding many interest point
matching scenarios, such as camera tracking or object recognition. In this
aspect, SIFT is still the best performing algorithm, generating the most stable
interest points along different scale factors. Another good performer regard-
ing scale transformation is BRISK, which is much faster than SIFT and thus
more suitable for real-time operation.
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Finally, when real-time operation is a critical requirement, efficient
approaches such as FAST, ORB, BRISK, and STAR are the most appropriate.
FAST is a very efficient approach, with regard to central processing unit and
memory consumption, but is very unstablewith regard to scale transformation.

CONCLUSIONS AND FUTURE WORK

In this article we presented an evaluation of different interest point extrac-
tors. We reported systematic and exhaustive measurement of their invariance
and robustness to several geometric image transformations like similarities
(rotations and scaling), affinities, and projectivities. In addition, we evaluated
their robustness to photometric transformations such as variations in light
exposure or image additive noise. We also evaluated their capability to
generate low-level information by measuring the number of points they
generate. Finally, we measured their efficiency with regard to computational
time requirements.

The choice of the feature detector strongly depends on the application
requirements. Overall, we can conclude that recent BRISK detector achieved
the best ratio between robustness and efficiency. ORB showed the best
performance over rotation transformation, whereas BRISK showed great
performance in scale, affine, and projective transformation and was the
fastest approach followed by FAST. ORB is a modification of FAST, which
does not have an orientation component and does not produce multiscale
features. Therefore, FAST was not as accurate as ORB in dealing with rotation
and scaling transformations.

Nowadays, efficiency is important, because more and more applications
are being migrated to mobile devices, such as the iPad or iPhone. Therefore,
approaches similar to FAST or BRISK, which require low computation and
memory resources, are useful and promising. The next step is to evaluate
some of these algorithms on mobile devices, taking into account that some
implementations must be rewritten and optimized to run on specific pro-
cessor architecture using specific instructions and with several restrictions
regarding parallel execution or memory management.

We are now evaluating current state-of-the-art image feature descriptors,
which, along with interest point detectors, form the basis of several computer
vision applications. Recent feature descriptor approaches like BRISK or
FREAK open new possibilities for computer vision applications, such as
robust real-time SLAM.
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