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Abstract. Computerized Tomography Angiography (CTA) based
assessment of Abdominal Aortic Aneurysms (AAA) treated with
Endovascular Aneurysm Repair (EVAR) is essential during follow-up to
evaluate the progress of the patient along time, comparing it to the pre-
operative situation, and to detect complications. In this context, accu-
rate assessment of the aneurysm or thrombus volume pre- and post-
operatively is required. However, a quantifiable and trustworthy eval-
uation is hindered by the lack of automatic, robust and reproducible
thrombus segmentation algorithms. We propose an automatic pipeline
for thrombus volume assessment, starting from its segmentation based on
a Deep Convolutional Neural Network (DCNN) both pre-operatively and
post-operatively. The aim is to investigate several training approaches to
evaluate their influence in the thrombus volume characterization.
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1 Introduction

An abdominal aortic aneurysm (AAA) is a focal dilation of the aorta that exceeds
its normal diameter in more than 50%. If not treated, it tends to grow and
may rupture, with a high mortality rate [1]. Lately, AAA treatment has shifted
from open surgery to a minimally invasive alternative, known as Endovascular
Aneurysm Repair (EVAR) [2]. This technique consists in the transfemoral inser-
tion and deployment of a stent using a catheter. Although better peri-operative
outcomes are achieved, long-term studies show similar mortality rates between
patients treated with EVAR and patients treated with open surgery [3]. This
is due to the appearance of EVAR related complications, known as endoleaks,
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which translate into a recurrent blood-flow into the thrombus area that causes
its continuous growing, with the associated rupture risk and possible reinter-
vention. Thus, post-operative surveillance is required to evaluate changes and
detect possible complications, for which Computed Tomography Angiography
(CTA) is the preferred imaging modality. This follow-up is traditionally based
on the observation of CTA scans at different times and the manual measurement
of the maximum aneurysm diameter, although AAA volume has been reported
as a better predictor of the disease progression [4]. In [5], a fully-automatic
thrombus segmentation approach based on a Deep Convolutional Neural Net-
work (DCNN) was proposed, specifically designed for post-operative thrombus
segmentation. Our aim is to extend that work by providing segmentation for
both pre-operative and post-operative scenarios and to provide a full pipeline
for thrombus volume assessment, investigating the influence of network training
strategies in the automatic segmentation quality and volume quantification.

2 State-of-the-art

Historically, aneurysm size, measured through its largest diameter, has been the
most commonly employed rupture risk indicator. This evaluation is done both
pre-operatively, to determine if an intervention is required, and post-operatively,
to assess the patient’s progression. Thrombus volume seems to be a better rup-
ture risk indicator [4], but it is hardly used in the clinical practice due to the lack
of automatic thrombus segmentation methods. The thrombus appears as a non-
contrasted structure in the CTA, its shape varies and its borders are fuzzy, which
makes it difficult to develop robust automatic segmentation approaches. Thus,
the subsequent precise and automatic thrombus characterization is unfeasible.

Currently there are only few dedicated software that provide assistance to
EVAR-treated aneurysm follow-up: VessellQQ Xpress (GE) [6] and Vitrea Imag-
ing (Toshiba) [7] allow the semi-automatic segmentation and volume quantifica-
tion of the thrombus. Hence, recent research work aims at obtaining a robust,
automatic thrombus segmentation algorithm easily applicable in the clinical
practice. Traditionally proposed methods combine intensity information with
shape constraints to minimize a certain energy function [8-10]. Machine learning
approaches have also been proposed [11], as well as radial model methods [12].
In [13] a deformable model-based approximation was introduced and recently
another deformable model approximation, validated in a large number of pre-
operative and post-operative datasets has been presented in [14]. However, these
algorithms require user interaction and/or prior lumen segmentation along with
centerline extraction and their performance highly depends on multiple parame-
ter tuning, affecting their robustness and clinical applicability.

Lately, DCNNs have gained attention in the scientific community for solv-
ing complex segmentation tasks, surpassing the previous state-of-the-art perfor-
mance in many problems. In [15] a novel and automatic patch-based approach
to pre-operative AAA region detection and segmentation is described, based on
Deep Belief Networks (DBN). Comparison with ground truth segmentation was
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not provided. In [5], a DCNN for automatic post-operative thrombus segmenta-
tion and evaluation was presented. Our goal is to extend that work by providing
pre-operative and post-operative AAA segmentation and volume quantification,
training the network with more datasets and evaluating the influence of the
training approximation in the subsequent thrombus volume measurement.

3 Methods

We propose an automatic approach to thrombus segmentation and volume quan-
tification. Segmentation is based on a DCNN specifically designed to segment
the thrombus in post-operative datasets, initially presented in [5]. The network is
based on Fully Convolutional Networks [16] and Holistically-Nested Edge Detec-
tion network [17] and combines low-level features with coarser representations
that ensure the smooth contour of the thrombus is kept. To evaluate the influence
of the training strategy in the segmentation and volume quantification results,
we carry out three experiments: first we train and test the network with mixed
pre-operative and post-operative datasets; then, a separate training approach
using only pre-operative or only post-operative data is included to compare the
results and draw conclusions. Since the number of annotated quality data is lim-
ited, we train in a 2D slice-by-slice manner. Training in 2D provides advantages
regarding speed, lower memory consumption and the ability to use pretrained
networks and fine-tuning. These advantages are leveraged and the 3D coherence
of the output binary segmentation is provided in a subsequent post-processing
step. Finally, segmentation quality is evaluated by comparison with manually
delineated ground truth segmentations. Thrombus volume is computed from the
ground truth segmentation and the post-processed automatic segmentation to
check the ability of the proposed approach to characterize the thrombus. A visual
representation of these steps is shown in Fig. 1. Each step is further explained
in the following subsections.
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Fig. 1. Pipeline for automatic thrombus segmentation and volume quantification.
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3.1 Abdominal Aortic Aneurysm Datasets

A total of 38 contrast-enhanced CTA datasets from different patients that present
infrarenal aneurysms were employed for our experiments. 20 of them are post-
operative datasets, while 18 of them correspond to pre-operative scans. These
datasets have been obtained with scanners of different manufacturers and have
a spatial resolution ranging from 0.725 to 0.977 in x and y, and 0.625-1 in z. They
also have varying contrast agent doses. The patient is always located in supine
position and the CTA starts around the diaphragm and expands to the iliac crest.
The data have been divided into training and testing sets. Training data consists
in 20 datasets, 11 post-operative and 9 pre-operative. Testing data is composed of
18 datasets, 9 post-operative and 9 pre-operative. None of the datasets correspond
to the same patient. We did not discard datasets of patients with outlying charac-
teristics, so the variability in the data is relatively large in terms of thrombus size
and shape or noise. In the post-operative datasets of patients with a favorable evo-
lution, endotension cases and datasets where a leak is visible have been included.
For all the patients manually obtained segmentations are available and used as
ground truths for the current study. Note that the number of pixels correspond-
ing to the thrombus is much smaller than the number of pixels corresponding to
background, with a mean ratio of approximately 1:8.

3.2 Experimental Setup: Thrombus Segmentation

As mentioned above, thrombus segmentation is based on a DCNN network,
trained slice-by-slice. Figure?2 is a visual representation of the network archi-
tecture. Our goal is to investigate the influence of the training approach by
performing three experiments. In the three of them, we train the same network
architecture, with the same hyperparameters and try to minimize the Softmax
loss, which reduces the influence of extreme values or outliers in the data and
provides the probability of each pixel corresponding to a certain class. Learning
rate is set 10e-3, with a step down policy of 33% and gamma equal to 0.1. The
Stochastic Gradient Descent solver is employed and training is done during 100
epochs, with a batch size of 4 images and no batch accumulation.

In the first experiment, we train our network with pre-operative and post-
operative data, all together. The network is trained with 2D slices of 11 post-
operative datasets and 2D slices of 9 pre-operative datasets. None of the datasets
correspond to the same patient. Data augmentation is applied in the form of
90 rotations and mirroring to enlarge the datasets and to prevent the network
from failing if a rotated dataset is introduced for testing. For testing, datasets
of additional different 18 patients are employed, 9 pre-operative and 9 post-
operative. The total number of slices for each stage is summarized in Table 1.

In the second and third experiments, 2 networks are trained separately, one
only with pre-operative data, the other one just with post-operative. For the
pre-operative, 9 pre-operative datasets are used for training and validation, and
9 different datasets are saved for testing purposes. These datasets are identical
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to those of the first experiment, and the same data augmentation is applied.
Testing is done on slices of patients not included in the training phase, as in the
first experiment. In the third experiment, corresponding to the post-operative
data, the same approximation is followed. The 11 post-operative datasets used
for training on the first experiment are utilized to train this network, and the
same 9 post-operative datasets are employed for testing. Data augmentation is
also equally applied. Table 1 summarizes the data for these experiments.

Table 1. Training, validation and testing slices used in each experiment.

Experiment 1 | Experiment 2 | Experiment 3
Train 4380 1835 2545
Validation | 772 323 449
Testing 2878 1447 1431

3.3 Post-processing and Quantification

The output provided by the DCNN are 2D probability maps, where each inten-
sity value is the probability of that pixel being thrombus or not. Thus, an auto-
matic processing of these maps is included as the last step to obtain the 3D
binary mask segmentation. First, we reconstruct the 3D prediction map volume
and apply Gaussian filtering in the z-direction to ensure some continuity in this
direction. We set the sigma value to o = 2* Spacing,. Then, K-means clustering
of the 3D probability map is employed, where the number of clusters is fixed to 6,
experimentally. The output cluster image is filtered and binarized, by removing
the class with the lowest probability of being thrombus. A subsequent connected
component analysis is used to keep the largest object, which in our experiments
always corresponds to the thrombus. The Volume is measured based on the
Divergence Theorem Algorithm (DTA), by estimating the volume of the throm-
bus from its point-list, as explained in [18]. Finally, a comparison between the
automatic thrombus binary segmentation (source, S) and the expert delineated
ground truth (target, T) is included to evaluate segmentation quality in terms
of total overlap, Dice coefficient, false negative rate (FN) and false positive rate
(FP), as proposed in [19]. The volume difference between both segmentations is
also included.

Total overlap for thrombus region (r): | S, NT.| /| T, |

Dice coef ficient for thrombus region (r): 2| S, NT. | /(| S|+ | T )
False negative error for thrombus region (r) : | T./Sy | /| Tr |

False positive error for thrombus region (r): | S./Ty |/ | Sy |

Volume dif ference : | Vp — Vs | /Vr
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Fig. 2. Deep convolutional neural network architecture for thrombus segmentation.

4 Results

Table 2 summarizes the results for the first experiment, where the network is
trained and tested both with pre-operative and post-operative data. The mean
Dice similarity coefficient is 81.4%, being this coefficient higher in the post-
operative than in the pre-operative. Since the number of pre-operative slices is
smaller than the number of post-operative slices and the network was initially
designed for the post-operative scenario, a reduction in the accuracy in the pre-
operative could be expected. This also impacts the volume difference between
the automatically segmented thrombus and the ground truth, being this differ-
ence larger in the pre-operative than in the post-operative. The mean volume
difference is 12.8%, where the over-estimation of the volume is of 10.9% and the
sub-estimation is of 13.9%. Sub-estimation occurs in the double of cases where
over-estimation occurs. Qualitative results of this experiment are shown in Fig. 3.
In the second and third experiments, we trained the same network but only
with pre-operative or post-operative data. Results are reported in Table 2. In the
pre-operative, contrary to our initial hypothesis that an improvement should be
observed when training two networks separately, a reduction in the Dice coef-
ficient and an increase of the volume difference is obtained compared to the
first experiment. We attribute these results to the reduction in the number of
training samples, being only slices extracted from 9 different datasets. Hence,
the ability of the network to generalize diminishes. When testing, the variabil-
ity in the aneurysm shape affects more notably the segmentation quality, and
the results for one testing dataset have a stronger impact on the global mean.
The worst result for a pre-operative dataset corresponds to the case depicted
in Fig. 4, where there is contrasted blood inside the aneurysm area. Probably,
the network does not expect to find high-contrasted areas that are not lumen,
stent or calcifications, which always set the limits for the segmentation, and thus,
it understands that there is a border in this contrasted area and sub-segments
the aneurysm; without this dataset the mean Dice coefficient would be equal
to 72.8% and the volume difference would be 14%, which approximates to the
results of the first experiment, but with half the number of training images.
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Table 2. Testing results for the three experiments: 1) the network is trained and tested
both with pre-operative and post-operative data, 2) the network is trained only with
pre-operative data, 3) only post-operative data is employed.

Experiment | Total overlap | Dice FN FP Volume difference

1| Pre 0.7844+0.127 | 0.790 +0.102 | 0.216 +0.127 | 0.193 +0.103 | 0.134 4+-0.093
Post 0.817+0.066 | 0.837 £ 0.062 | 0.183 +0.066 | 0.133 £+ 0.095 | 0.121 + 0.081
Mean 0.801+£0.103 | 0.814+0.087 | 0.1994+0.103 | 0.163 £ 0.103 | 0.128 4+ 0.088

2| Pre 0.616 £0.171 | 0.697£0.132 | 0.384 +0.171 | 0.154 £ 0.076 | 0.265 4= 0.220

3 | Post 0.886 +0.058 | 0.855 + 0.065 | 0.134 +0.058 | 0.152 4 0.087 | 0.086 4= 0.080

Correct segmentations

Incorrect segmentations

Post-operative datasets

Pre-operative datasets

Fig. 3. Qualilative segmentation results of the first experiment. The manual ground
truth is shown in green and the automatic segmentation in yellow. (Color figure online)

With respect to the third experiment, related to the post-operative, an
increase of the Dice coefficient and a decrease on the volume difference is
observed, which agrees with our hypothesis that by training both scenarios sep-
arately, better results can be expected. A 33.9% improvement in the volume
difference is achieved, although only half the number of training images have
been utilized.

Fig. 4. Incorrect pre-operative AAA segmentation due to contrasted blood inside it.



36 K. Lépez-Linares et al.

5 Conclusions

In this paper, we have investigated the influence of the DCNN training strategy
in the automatic segmentation and quantification of the AAA volume. Three
experiments have been performed: first, the network has been trained and tested
with both pre- and post-operative datasets; then, two networks have been trained
separately, only with pre- or post-operative data. The same training and testing
datasets are used for all the experiments, which correspond to different patients.
The results showed that by training separately for the pre-operative and the post-
operative scenarios, similar or even better results could be obtained compared to
training everything together. However, the number of training samples is smaller
when training separately and thus, outlier datasets impact more negatively the
results than when training together. We conclude that by training separately
with a larger number of cases more precise results could be obtained. Each
network would adapt to the specificities of each scenario, such as the appearance
of the stent in the post-operative, the bigger thrombus size in the post-operative
when the evolution is unfavorable or the appearance of leaks. Fine-tuning from
network weights learned from medical images could also improve the results.

Regarding volume quantification, the goal is to utilize thrombus volume dur-
ing follow-up to assess disease progression. EVAR reporting standards [20] state
that an increase in the aneurysm volume of 5% is considered clinically rele-
vant and a clinical failure after EVAR. Intra-observer and inter-observer vari-
ability for volume measurements have ranged between 3% and 5% from semi-
automatically segmented aneurysms [20-22]. From a clinical perspective, our
pipeline produces significant volume differences between the ground truth and
the automatic segmentation. These differences vary in the range of 8% to 12%
in the post-operative and 13% to 26% in the pre-operative and can equally
correspond to over-estimation or sub-estimation of the volume. The automatic
segmentation results are reasonably good, but the measured volume values still
need to be refined to be directly applicable in the clinical practice for quantita-
tive progression assessment. Future work aims at reducing the volume difference
between ground truth and automatically segmented thrombus, by adapting our
method to that purpose and analyzing the volume quantification results with
more data.
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