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Abstract

Currently, 3D rendering is accessible within Web browsers through
open standards such as WebGL, X3D, and X3DOM. At the same
time, there is wealth of mature desktop software which comprises
algorithms, data structures, user interfaces, databases, etc. It is a
challenge to reuse such desktop software using the Web visualiza-
tion resources. In response to this challenge, this article presents a
novel framework, called ReWeb3D, which minimizes the redevel-
opment for migration of existing 3D applications to the Web. The
redeployed application runs on a Web server. ReWeb3D captures
low-level graphic calls including geometry, texture, and shader pro-
grams. The captured content is then served as a WebGL-enabled
web page that conveys full interactivity to the client. By splitting
the graphics pipeline between client and server, the workload can
be balanced, and high-level implementation details and 3D content
are hidden. The feasibility of ReWeb3D has been tested with ap-
plications which use OpenSceneGraph as rendering platform. The
approach shows good results for applications with large data sets
(e.g. geodata), but is less suited for applications intensive in anima-
tions (e.g. games).

CR Categories: C.2.4 [Computer-Communication Networks]:
Distributed Systems—Client/Server; D.2.13 [Software Engineer-
ing]: Reusable Software—Domanin Engineering;

Keywords: WebGL, OpenGLES2, C++, JavaScript, Web, Open-
SceneGraph, Software Migration, Mobile Devices, Client Display

Glossary

CSA Client-Side Array
DCC Digital Content Creation
GUI Graphic User Interface
LLVM Low Level Virtual Machine
LOC Lines of Code
LOD Level of Detail
OpenGL ES OpenGL for Embedded Systems (mobile phones,

video consoles, smartphones)
OSG Open Scene Graph graphics Toolkit
TMS Tile Map Service
WebGL Web Graphics Library for 2D/3D interactive

rendering.
XML Extensible Markup Language for document

encoding
WMS Web Map Service

1 Introduction

During over 50 years, extensive development of mature and robust
software including graphic interaction has taken place, in domains
such as medicine, physics, engineering, and entertainment. This

software today runs mainly on desktop platforms, and only recently
the challenge is being faced, of exploiting it in mobile devices such
as smart phones, tablets, etc. (Figure 1). This evolution presents
an urgent demand for multi-platform implementations. At the same
time, Web technology and standards have an opportunity to face
this challenge. Using standardized web technologies, unified appli-
cations can be developed which run on many platforms. With the
recently added support of WebGL, web browsers natively support
running 3D visualization applications ([Marrin 2011]).

However, for the wealth of existing desktop software with graphic
interaction, migration to the Web represents several major obsta-
cles: (1) Redevelopment entails significant mastering of languages
and standards for web-related programming. (2) Millions of lines
of code need to be ported. (3) Intellectual property must be pro-
tected if the source code transits the network. (4) Large amounts of
transferred data reduce the performance of the 3D application. This
article presents a prototype framework that provides a satisfactory
answer to these issues for a significant application range.

The remainder of the article is organized as follows: Section 2
reviews the state of the art. Section 3 discusses the implemented
methodology. Section 4 presents the implementation details. Sec-
tion 5 describes the results obtained in the example executions and
discusses the implementation performance. Section 6.3 draws the
relevant conclusions and future challenges of our undertaking.
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Figure 1: ReWeb3D supports the migration of a 3D application
from desktop to a WebGL-compliant client / server application.

2 Related Work

A number of related methodologies exist, which address the general
problem of migrating interactive 3D graphic desktop applications to
Web browsers. These rendering methodologies are: (1) remote, (2)
distributed, (3) pipeline, (4) plug-in based, and (5) WebGL. For the
sake of clarity, in this article we will use the term client for the
I/O system that directly interfaces with the user. The term server
names the system that is remote to the system and usually carries
the computational kernel of the application.

2.1 Remote Rendering

In remote or image-based rendering ([Shi et al. 2009; Tizon et al.
2011]), the rendering is completely calculated in the server. The
generated images are continuously streamed through the network
towards the client. The visualization occurs at the client, via a thin



implementation. Mouse, keyboard or touch events are captured and
sent back to the server in order to steer the application and sub-
sequently to recalculate and refresh the scene. Remote rendering
causes a high network load. This network load is, however, rela-
tively constant because the continuous data flow only depends on
the canvas resolution. Remote rendering requires high speed con-
nections to avoid network saturation even if optimized and/or com-
pressed transmission methods are applied.

2.2 Distributed Rendering Pipeline

A Distributed Rendering Pipeline runs 3D applications shared
between client and server by using transferred-drawing calls
([Humphreys et al. 2001; Magallón et al. 2001; Neal et al. 2011]). A
classical example of distributed rendering is Xgl on Linux or Unix
platforms. In general, the 3D application is run at the server, while
low-level (graphics API) drawing calls are dispatched and executed
at the client by using its local resources. Interaction events are cap-
tured at the client and sent to the server for remote processing and
adaptation of the drawing commands (scene refreshing). It must
be noticed that distributed rendering requires a fast connection and
tolerates lower delays, as it must be synchronous.

2.3 Plug-in Based Methods

A plug-in is a binary application (e.g. 3D visualization) installed at,
and subordinated to, the web browser. A plug-in generally has full
access to the resources of the client, hence increasing the flexibil-
ity of the implementation. The plug-in may contain (1) a significant
computational kernel (the migrated application) which therefore re-
mains foreign to the browser itself and (2) a visualization part. Web
3D interactive visualization plug-ins are located in, and use, the
client hardware. Commercial examples are Unity3D or Adobe´s
Stage3D. Major disadvantages of the Web visualization plug-ins
are: (a) lack of standardization across browsers, (b) need of manual
installation and maintenance efforts, (c) network security risks.

2.4 WebGL based approaches

WebGL is a low-level 3D API for web browsers. It was specified as
an open standard by the Khronos Group in 2011 ([Marrin 2011]).
WebGL has been adopted by most web browsers. Its version 1.0 is
a JavaScript binding of the OpenGL ES 2.0 API (e.g. a subset of
Desktop OpenGL) depending on vertex and fragment shaders and
natively running on the GPU hardware.

Despite WebGL being a relatively recent standard, there are several
browser-based 3D middleware frameworks supporting WebGL as
rendering back-end. Examples are SpiderGL ([Di Benedetto et al.
2010]), X3DOM ([Behr et al. 2011; Behr et al. 2010]) and XML3D
([Sons et al. 2010]). X3DOM addresses the specification and ma-
nipulation of the 3D scene using X3D and a document-object model
(DOM) schema for the access. X3DOM is used widely, for exam-
ple, as part of a web-based DCC pipeline ([Ulbrich and Lehmann
2012]). XML3D aims at a minimal addition to standard web tech-
nologies to enable 3D content.

Migration of already established desktop 3D applications into
JavaScript is a highly demanding task due to the differences be-
tween programming languages and to the amount of code to be
ported. As a response, the Emscripten compiler has been imple-
mented, which is able to compile C/C++ code into Javascript, using
LLVM bytecode as an intermediate step ([Zakai 2011]).

These first attempts show promising results with ported 3D engines.
A significant standing problem is that each library used in a 3D
application has to be migrated, downloaded and run by the client.

3 Methodology

This section discusses the technical milestones of the ReWeb3D
framework. WebGL-capable browsers (Figure 2) are novel render-
ing platforms which enable standard-based, plug-in-free 3D Web
applications. This capability is relevant in the context of reusing
large portions of existing desktop 3D applications. As a case study
Figure 2 shows an example (OSG Earth) running on OpenGLES2,
which provides an API for multiple rendering platforms. Using
ReWeb3D, desktop 3D applications can additionally use WebGL-
compliant web browsers as a target platform.

We will discuss the methodology of a novel framework to migrate
desktop 3D applications to web pages, based on a client-server dis-
tributed computing scheme (Figure 1). Opposed to running both,
the application and its GUI in the desktop, we implement a frame-
work in which the application is run (and its data stored) in the
server, while its visualization is run in (possibly) several clients.

The framework is implemented as follows:

1. High-level structures and objects of a visualization scenario
(parametric curves, surfaces, polyhedral shells, text) are con-
verted into low-level graphical primitives (e.g. triangles, lines,
and points) by the visualization application.

2. Calls to the low-level graphic application programming inter-
face (API) are then redirected to a web application server.

3. At the server, a web page is generated, containing the corre-
sponding browser code.

4. The Web page is sent to the client.

5. At the client hardware, the web page is loaded and executed,
performing the rendering procedure.

6. Interaction events for the camera manipulation of the scene
are tracked and handled at the client, to avoid network transit.

7. Dynamic scenes are computed at the server.

8. Animations or scene regenerations are sent through asyn-
chronous JavaScript and XML (AJAX) updates.

This methodology has several advantages: (1) The strengths of low
and moderate dynamic graphic application are preserved. (2) Only
minimal additional development is needed to connect with the web
application server. (3) Only the low-level graphics API calls are
redirected, serialized, and sent to the client. (4) No high-level
source code is given to the client, therefore protecting the intel-
lectual property of the application. (5) The network bandwidth is
used efficiently, as only necessary updates are requested through
the network. (6) Distributed computation of the scenes balances
the computational work load between server (e.g. storage, traversal
of the scene graph, culling [Akenine-Moller and Haines 2002]) vs.
client (e.g. event handling and low-level rendering on the GPU).
The downturns are that (a) highly dynamic scenes are not preserved
and (b) specific interaction techniques would still need to be manu-
ally ported to JavaScript

Figure 3 shows the general architecture of our approach. We replace
the GL driver by a GL proxy that captures calls to the graphics card
(GPU) and embeds them in a WebGL canvas of a web page. The
client loading the page executes the WebGL calls (possibly with
hardware-accelerated graphic functions). The desktop 3D applica-
tion is embedded in a server environment. The rendering is not exe-
cuted on the server. Instead, its visualization calls are converted to
a 3D web page and its low-level rendering commands are executed
in the client’s browser. The application itself (in particular sensitive
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Figure 2: OpenGLES2 Interface supporting the migration of desk-
top applications. This example addresses an OpenSceneGraph
Earth application.

code) remains largely on the server. If a web page serving as the en-
try point of the application is requested by a browser, the web page
is created by our framework based on these major considerations:
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Figure 3: General architecture. Visualization activity embedded in
a WebGL canvas, executed locally at the client.

1. We provide a thin software layer called GL proxy which uses
the low-level rendering interface (Graphics Library, GL) to
capture GL commands and to generate the equivalent browser
commands.

2. Client and server are asynchronously connected.

3. The client renders the scene independently and only gets oc-
casional scene updates from the server.

4. The GL commands based on their individual semantics are
classified into commands used for (Figure 4): (1) initializing
(Init), (2) continuously (re) painting (Paint), and (3) oc-
casionally updating (Update) the 3D application.

Figure 4 shows that in classical desktop 3D applications, calls to the
low-level rendering API are made by the application at the server
(which is also the client). In contrast, our approach intercepts these
low-level visualization calls, generates appropriate JavaScript code
and sends it to the client for execution. Hence, repeated execution
of renders is moved from server to client. Only at regular time
events, the client gets back to the server to update the current scene.
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Figure 4: Comparison of visualization in desktop applications
against server - Web client visualization.

3.1 Distributing the Rendering Pipeline

When the kernel of the application is geographically removed
from the geometry and rasterization ([Akenine-Moller and Haines
2002]), the commands transit the network. For repeated generation
of rendered images (render loops), the GUI commands must be sent
repeatedly over the network. This transit would negatively impact
the render performance.

In contrast, our framework reduces network utilization and depen-
dency between client and server by taking a snapshot of one itera-
tion of the rendering loop on the server. This snapshot is then sent
to the client, which locally performs the actual rendering loop by
repeatedly dispatching the low-level commands. This scheme dis-
tributes the application part of the rendering pipeline between client
and server.

To accomplish this process, we intercept the graphics pipeline at the
interface to the low-level rendering API, which is normally invisi-
ble to the application. The only change to the application is the way
in which the rendering is triggered. Conceptually, instead of nest-
ing the rendering in a loop, each low level GL command executed
during rendering has to be called only once to be able to capture
it. Embedded in the server, the GL commands are then generated
as Web page source code. The client receives this source code in-
side a minimal 3D application, which only executes the low-level
commands in the render loop and handles events either locally or
by sending them back to the server.

3.2 Organizing GL Calls into Stages

Efficient rendering implementations depend on organization of GL
functions into functional blocks, which we call stages. Typically,
there is an initialization stage, which is called first to setup
geometry, attributes, or textures. The paint stage is repeatedly
called to actually draw the scene, thus enabling continuous anima-
tion. This organization is also supported by many window man-
agers or GUI toolkits, which provide hooks to set callbacks to these
functions. We adopt this organization for the minimal 3D web ap-
plication which runs on the client. To do so, we manage an internal
state in the GL proxy by specifying the current functional block as
one of Init, Paint, Update. Before calling the respective



function on the server, the state must be set. Subsequent low-level
API calls are captured and stored in the respective function block
for the client application. If the desktop 3D application has the
same organization into functional blocks, this capturing can be im-
plemented in a straightforward way by setting the state of GL proxy
just before proceeding with the usual function block.

However, some desktop 3D applications and middleware frame-
work provide only one central aggregated render function or
frame(), instead of separated functions. In such cases, the appli-
cation manages the rendering resources by initializing them on the
first reference, and by using them on subsequent references. For a
unified client implementation, we aim to enable the same organiza-
tion into stages as before. In our approach, we filter GL functions
depending on their semantics.

For filtering we classify all GL functions as belonging to one or
more of 3 stages:

• The Init and Update stages contain GL functions that are
used to setup the relatively static parts of the rendering appli-
cation. Examples are the creation and fill of geometry buffers,
texture data, and shader programs.

• The Paint stage contains GL functions that are to be exe-
cuted in the rendering loop. Examples are the drawing func-
tions, binding the current buffers, textures, shaders, and set-
ting of shader parameters.

Having the classification of all functions from the GL interface, we
can filter the functions according to the internal status of our GL
proxy. As shown in Figure 5, we call the central rendering func-
tion of the middleware (e.g. frame()), several times with the GL
proxy’s state set to different stages (e.g. init, paint). After
the server is set-up, when query from a browser appears, the init
stage is set before calling frame() to catch all GL calls relevant
for preparing the rendering. Then, we set the state to paint and
call again frame() to catch the GL calls to do the actual ren-
dering. Then, the generated WebGL page is sent to the client for
execution on its WebGL-compliant browser. The browser in turn
initializes the rendering and enters the render loop repeatedly, exe-
cuting the paint calls.

If a change of the scene occurs, the browser queries the server for
an update. Such changes can be triggered by larger movements of
the virtual camera or by interactions with the user interface. The
current status of the browser is sent to the server (e.g. the virtual
camera position or pressed buttons). This status is entered as a se-
quence of events to the attention of the server application. To gen-
erate the necessary update, the server sets the proxy GL stage to
Update and reruns frame(). The created JavaScript calls are
sent to the browser and executed once, adapting the render loop to
reflect the changes.

Summarizing, the server updates the scene at relatively low fre-
cuencies. Each update at the server generates the necessary We-
bGL code. The actual render iterations creating images at interac-
tive rates takes place solely on the client. This approach decouples
server and client in the rendering pipeline.

4 Implementation

To test our concept, we have implemented the framework,
using OpenSceneGraph as a 3D middleware and Emweb
WebToolKit as the web application server. OpenSceneGraph
is a widely used open source rendering engine of considerable func-
tionality and active developer constituency, which supports Open-
GLES 2.0. WebToolKit is a framework to build web applications
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Figure 5: General sequence of actions: the server runs the 3D
application to capture GL calls corresponding to the Init and
Paint stage, and sends the HTML page to the browser. The
browser executes the render calls, enabling local interaction. If
larger updates are necessary, the changed GL calls are generated
within the Update stage on the server and sent to the client.

with C++, allowing creation and service of complex web pages,
which has basic support for WebGL.

4.1 Application Programming Interface - API

The API chosen is a subset of desktop GL, corresponding to the
standard OpenGLES 2.0 (GLES2), developed for embedded 3D
applications ([Aaftab Munshi 2010]). The reasons for this choice
are: (1) WebGL is based on GLES2 and thus very close in terms of
syntax and semantics. (2) GLES2 implements a subset of desktop
OpenGL, enabling high portability of applications for desktop. (3)
GLES2 has dropped the fixed function pipeline to keep the interface
and hardware implementations small, in comparison to OpenGL 2.

The choice implies that applications need to provide custom shader
programs, manage a matrix stack if needed, and cannot rely on im-
mediate mode rendering. These consequences are congruent with
the evolution of OpenGL versions beyond 3.1, where the fixed func-
tion pipeline is restricted. GLES2 does not include more advanced
features available for the desktop, including 64 Bit floating point
precision, geometry and tessellation shaders, and in general, has
reduced resources.

To summarize, GLSE2 is a small but capable subset to GL func-
tions, which enable multi-platform development of applications for
(1) desktop, (2) embedded systems, and (3) Web applications, min-
imizing the need for adaptations and learning of new interfaces.

4.2 GL Proxy Embedding

OpenSceneGraph provides frame(), a central method to ren-
der a single frame of the scene with the current view settings.
Within this method, the scene graph is traversed to perform view
frustum culling, state sorting, conversion of geometry into low
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level primitives, etc. The optimized scene description is sent to
the graphics driver to perform the rendering. As part of the render-
ing, frame() will be called repeatedly to produce interactive 3D
graphics. The iteration is controlled by a timer, to have a desired
refresh rate or with maximum speed, to saturate the refresh rate.

To implement our concept, we need to intervene the existing
pipeline at two places:

• OpenSceneGraph needs specific code to interact with the
GUI toolkit (e.g. receive events, trigger the rendering of a
scene frame, provide a canvas window). We replace this
toolkit specific code, since we need to control calls to the cen-
tral rendering function.

• We replace the library that implements GLES2 by our GL
proxy library. Hence, we receive all API calls to the graph-
ics driver and apply custom implementations for them.

The first alteration is necessary, as we do not need continuous ren-
dering on the server-side. Instead, we manually trigger frame()
explicitly. When generating the Javascript code for the respective
Init, Paint, and Update stages, we first set the state of the
GL proxy to the respective state before calling frame() once. In
this manner, we can decide, based on the current state of the GL
proxy and the semantics of the GL function, whether to generate
Javascript code for a specific function or to omit it.

The second alteration is the replacement of the GL driver by the
GL proxy library, which receives the GL calls. In the GL proxy, the
majority of the GL calls just need to be relayed directly by writing
the appropriate Javascript string into the output script. Examples of
these calls are glClearColor(), glBlendFunction(), and
glLineWidth(). In case of GL objects that are created for later
reference (buffers, textures, shaders and programs) the GL proxy
library makes the client to store these in Javascript variables and
maintains a mapping between client-side variables and server-side
objects (GL object identifiers) (Figure 6, left).

Regarding GL calls that query the state of the client context, we
assume:

1. Constants such as the maximum number of vertex attributes,
texture units, or available extensions can be queried on initial-

ization and are reported to the server.

2. Efficient middleware implementations such as
OpenSceneGraph maintain the GL state internally
by tracking changes (e.g. last texture, color, and buffers) to
avoid redundant calls to GL. Therefore, we do not implement
the respective querie functions in the GL proxy. Exceptions
are some shader related queries, as discussed later.

For a number of GL calls, the implementation is not straightfor-
ward. We discuss them next.

1. Geometry data including vertices, colors, normals, texture co-
ordinates, and indices is provided in the form of buffers which
are allocated and maintained by the graphics hardware. We
serialize and aggregate the data in binary blobs to be sent to
the client.

2. To support CSAs, which are specified in OpenGLES2 but not
in WebGL, temporary buffers are created, filled, used, and dis-
carded within the Paint function. Pointers to CSAs are also
maintained, along with their enabled status (Figure 6, right).
The temporary buffer option is not optimal since the data
needs to be transferred to the graphics card for each frame.
After appraisal of the pros and cons, we still choose to sup-
port CSAs and to issue a performance warning when used.

3. For setting up shader programs and relevant uniform and at-
tribute data, middleware implementations rely on queried val-
ues. An example is posed by uniform variables: Only uni-
form variables reported as active need to be bound. To return
active uniform variables and attributes without actually com-
piling the shader on the client (which requires a round-trip to
the client), we parse the shader source for present variables
during the Init phase and return the results, when queried.

4. For textures, we create a temporary raster image in memory,
provide a URL, and call the WebGL function with a URL link
to that image.

4.3 Camera Control

In addition to static aspects of a 3D scene, the users must be able
to explore and navigate the scene. To support decoupling client-
server and enable interaction without continuous roundtrips to the
server, we provide custom interaction to the client. In it, the map-
ping from input events to virtual camera changes is confined to the
client. A Javascript Matrix variable is administered, which repre-
sents the view transformation dictated by the input events. To apply
the extra transformation, we need to inject an additional matrix uni-
form variable to each vertex shader code to multiply it to the output
vertex. We assume that the rendering middleware applies transfor-
mations by using a combined model- view transformation matrix
Tall = Vserver ∗ Mn−1...M1 ∗ M0. The combined model-view
transformation will undo the server-side transform and then apply
the client-side transform vcamera = Vclient ∗ V −1

server ∗ Tall ∗ v.
This approach ensures the correct transfer to the browser of poten-
tially nested transformations typical of OpenSceneGraph, while
keeping smooth interaction. It must be noticed that camera manip-
ulation still has to be reimplemented on the client-side. By default,
we provide the client with basic trackball manipulation.

5 Results

5.1 Basic Examples

We demonstrate our implementation with basic
OpenSceneGraph example applications, such as
osgGeometry, osgShape, and osgViewer (Figure 7).



Figure 7: Basic examples ported from OpenSceneGraph: osgGeometry, osgShape, and osgViewer loading a CityGML urban
model. Colors and textures have been adapted to enhance legibility.

They illustrate the rendering of different primitive types, textures
and automatic tessellation of analytical shapes.

The dataset used is a portion of the Rot-
terdam virtual model (publicly available at
http://www.rotterdam.nl/links rotterdam 3d)
in the CityGML standard format (Figure 7, right). Notice that
geospatial models typically contain protected data that cannot
be distributed freely, are stored in specific data formats, and are
massive.

To run the examples, we have to load our default shaders to
the scene graph, since the examples depend on a fixed function
pipeline. OpenSceneGraph already provides vertex attributes
for geometry as well as the transformation matrices using standard-
ized names which we can use in the shader. Camera interaction was
kept confined to the client.

5.2 Rendering of 3D Geovirtual Environments

As geovisualization examples, we chose rendering of
3D geovirtual environments based on osgEarth and
VirtualPlanetBuilder, which are terrain rendering
toolkits for C++ desktop applications. Our example displays a
virtual globe with different textures applied (OpenStreetMap,
aerial photos) as well as a textured local terrain model (Figure 8).

The examples include massive raster and geometry data that has
been preprocessed to multiple level of detail (LOD). Using a config-
uration protocol, data sources with different spatial reference sys-
tems can be specified for the current scene. This diversity allows the
coexistence of different terrain and texture layers, features, and la-
bels. Data sources may be files or web services (e.g. WMS, TMS).
At rendering time, the engine selects the geometry and surface data
for the current view point, applies optimization, (e.g. culling, state
sorting), and sends the low-level commands to the rendering sub-
system.

The library osgEarth is one for which a rewrite would be non-
trivial. In contrast, in ReWeb3D the system runs on a server and
writes to a WebGL-enabled web page to be executed in the client
browser, render the data (e.g. globe). Only data in the appropriate
LOD is transferred and rendered on the client. To enable streaming
of new scene data, the thin client sends, for example, its current
view parameters and requests a new frame in configurable intervals
(e.g. 500 msec). The ReWeb3D wrapper adapts the server camera
and re-evaluates the scene graph in the Update() and Render()
stages, sending the updated scene data and the rendering commands
to the client.

5.3 Applications Running on Multiple Platforms

Providing a WebGL client, our framework offers access to the visu-
alization application for various platforms. Specifically, we target
desktop applications, compatible browsers (Figure 7) and in gen-
eral, any device capable of WebGL. We have tested the performance
of the applications, modified as discussed, on mobile devices. We
have chosen different operating systems, displays and resolutions
to test the urban model (Figure 9).

In the tested ReWeb3D prototype the loading time and the achieved
frame rate are far from being practical. However, the central result
is that the identical, candid, examples are used in the tests and not
versions specifically crafted for mobile devices. Regarding the cur-
rent slow response, we argue that (1) the ReWeb3D framework is
able to configure the middleware to deliver lower LOD scenes when
running on mobile devices, and (2) increasingly powerful devices
make practical the prototypes that are slow in the current hardware.

5.4 Performance

The performance of the current implementation was tested in
Google Chrome 25 and Mozilla Firefox 18 browsers running in a
desktop PC. Both browsers natively support WebGL.Both browsers
natively support WebGL. By the time of writing this paper, Mi-
crosoft Internet Explorer and Opera do not support WebGL natively.
On Windows, Chrome and Firefox browsers use Google Angle li-
brary to translate WebGL/GLES2 to Microsoft DirectX9 for bet-
ter driver support. Since Firefox allows to use native OpenGL calls,
we tested performance both for native and for Angle-based imple-
mentation.

The tests for this article were conducted using an Intel Quad Core
Q9400 processor, 4 GB of RAM and a GeForce GTX 285, Windows
7 64 Bit (Service Pack 1) with the latest stable graphics drivers.
Both client and server are in a local network, but exposed to full
Internet traffic. We measured (1) the amount of data downloaded,
(2) loading time, (3) memory consumption, and (4) effective frame
rate at the client for the examples above.

For all tested browsers, the resulting frame rates are high (above
50 FPS), and in the basic examples the downloaded data size is
below 200 KiB, taking less then 500 msec. to start the rendering.
However, runtime memory consumption differs strongly across the
browser. This variation obeys to the differing status of the support
for WebGL in each one.

The urban model (thematic, geometric, appearance model) had ap-
proximately 30 MB. The processed model sent to the client con-
tained a texture atlas with reduced resolution and batched geometry



Figure 8: Left: Global spatial models with spherical projection and color texture. Center: flat projection and OpenStreetMap texture. Right:
Multiscale terrain model with color texture.

of 8 K vertices, demonstrating the practical use of a middleware.
The downloaded data is only about 6.7 MBs, resulting in a remark-
able loading time of about 7 sec. across all platforms.

For server-side animation, we tested a simple rendering of a rotat-
ing triangle, where the changed matrices are sent repeatedly to the
client. While the frame rate of this simple rendering is still very
high, the amount of data sent regularly is about 270 B, downloaded
in about 5 msec., each. As a 4 × 4 32-bit floating point matrix has
only 64 B, this performance indicates a considerable overhead for
the AJAX calls and points out a future work domain.

5.5 Porting Use Case: A Fire Spread Simulator

We selected the Fire Spread Simulator, an OpenSceneGraph-
based application, and ported it to our framework. The goals are
the exercising of the porting process, the identification of possible
pitfalls, and the estimation of the working hours to be invested. The
Fire Spread Simulator is part of a Ph.D. research and comprises
around 8.000 lines of code.

The software simulates fire spreading in forest and urban areas
using algorithms based on a cellular automaton ([Moreno et al.
2011]). The algorithms are designed to be used at interactive rates.
The user can interact with the fire by playing scenarios (e.g. hin-
der, start, limit). The simulator consists of Simulation, Visualiza-
tion, and User Interface components. The goal of our porting is to
run the simulation and to visualize components on the server while
showing the interactive rendering on the client.

5.5.1 Application Structure

The static topographic data includes a digital elevation model
(DEM) and classification of the ground in disjoint zones. Models
for buildings are specified in XML files, storing material, height,
and number of floors. Internally, a grid of cells represents the sce-
nario for the fire spread model. Each cell records the local status
and local fire intensity (among other data). The algorithm iter-
atively updates a corresponding colored image, where each pixel
represents the status of a cell.

In the visualization component, the scene graph comprises the ter-
rain model with the aerial texture and the fire model texture blended
on top. In addition, procedural geometry for building and tree mod-
els is added to the scene graph.

5.5.2 Porting Considerations

1. The main function of the application is changed to an initial-
ization method which is called when a client connects the Web

Figure 9: A city model test running on 3 mobile devices: (i) Apple’s
iPad 1. (ii) Samsung Galaxy Tab and (iii) Sony Ericsson Xperia neo
V mobile phone.

server. This method launches a WebGL server and prepares
the basic static data.

2. The command line arguments of the original application are
provided to the WebGL via a configuration file or URL en-
coded arguments. In this case, a XML file was prepared and
loaded.

3. Due to WebGL restrictions, the textures must be uncom-
pressed. In this case study the textures were the aerial terrain
view and fire ones.

4. The simulation at the server is decoupled from the render
loop. The simulation runs in continuous manner on the server,
but only runs the render method when triggered by the client.

5. Textures in the web application are implemented with cus-
tomized shaders. They compute the texture coordinates and
correctly place it on the terrain texture. The overlay color is
blended with the color from the aerial view of terrain texture
and written as fragment output.

6. While the fire simulation is running and continuously updat-
ing the overlay image, the OpenSceneGraph framework
makes sure the texture is updated accordingly. In conse-
quence, also the updated images are transferred and applied



Figure 10: The Fire Spread Simulator running as a desktop OpenGL application (left) and as a migrated client / server WebGL application
(right). Minor color differences are due to differences between fixed OpenGL and our own WebGL shaders.

at the client.

7. OpenSceneGraph resizes our overlay image to Power-of-
two (POT) sizes. This resizing produces minor resampling
artifacts.

8. The tree models contained in the scene are rendered us-
ing a billboard technique. Their individual vertical rota-
tion is adapted (per frame) to face the user camera, and the
OpenSceneGraph computes the aggregated model-view
matrix on the CPU. This process requires a large number of
Uniform matrix variables to be updated. As a consequence,
the network traffic is very high and the correct orientation is
only obtained after an update from the server.

5.5.3 Case Study Results

Figure 10 shows a comparison of the desktop simulator and the
achieved result through the ReWeb3D framework. The implemen-
tation of the fire spread algorithm and the source data used for
calculations remain in the server. The result of the porting pro-
cess is considered a very promising one. In less that 15 working
hours we managed to port large parts of the functionality of an
OpenSceneGraph-based desktop simulation comprising about
8.000 LOC to the Web. A traditional porting of the application
would require resources enlarged by several orders of magnitude.

Some of the issues reported required changes to the application, but
do not change its functionality. On the other hand, forcing the split-
ting between the kernel of the application and its graphical output
would benefit not only web-based but also desktop-based applica-
tions. Decoupling client-server responsibilities gives, for example,
the opportunity transfer CPU operations to more efficient GPU im-
plementations. However, separating the implementation also adds
complexity when supporting dynamic scene evolution. Consider-
ations associated with the use of fixed-functionality and many up-
dates are: (i) OpenSceneGraph classes currently relying on fixed
functionality (e.g., texture coordinate generation, texture blending,
lighting), are expected to be replaced by shader-based classes in the
future. (ii) Rendering mechanisms depending on CPU side compu-
tations (e.g. billboard orientation and client-side arrays) have to be
customized upon migration in order to avoid bandwidth problems.

6 Discussion and Conclusions

6.1 Technical Discussion

We have presented a successful prototype of the proposed method-
ology to migrate OpenSceneGraph-based desktop applications
with high performance and graphical quality on browsers and mo-
bile devices. The example takes advantage of the middleware func-
tionality in: (1) use of importers for images and geometry, (2) tes-
sellation of analytical shapes, (3) preparation of low-level primi-
tives, (4) definition of the scene graph, and (5) status sorting for
efficient rendering calls.

With our methodology, legacy applications can be rapidly migrated
if they do not rely on the fixed function pipeline. If they do, de-
fault shaders may provide similar functionality. In middleware such
as OpenSceneGraph, setting up parameters is done for trans-
formation matrices, but not for all fixed-function attributes. An-
other drawback of choosing OpenGLES2 as API is its limitation to
widely supported functionality, which excludes some more recent
features of graphics hardware.

Uncoupling server and client obviously is a non-trivial task. If
scene changes imply small data sets, the transit in the network is
kept down. For example, if basic camera control may be provided
only on the client, the server could be ignored for many refresh-
ing purposes. On the other hand, scene changes requiring massive
data computing in the server (e.g. complex camera navigation tech-
niques, particle systems, physical simulations) imply considerable,
and expensive, server-client communication.

6.2 Relevance for System Integration

A formal design of experiments to evaluate efficiency in code mi-
gration (as result of our approach) would be impossible. Instead,
we discuss the expected issues and problems when undergoing the
migration:

(1) Existing desktop applications are a repository of know-how,
money and time of very large proportions. Their migration to
the Web cannot be ignored, but at the same time, it is extremely
expensive in training, time, money, etc. As examples, the li-
braries used in the Results section have the following sizes: (i)
OpenSceneGraph: 300K LOC and (ii) osgEarth: 200K LOC.

(2) After migration to the Web, applications are to be maintained
and improved. Decoupling server and client parts is positive for
both, desktop and web applications, because by sharing code it low-
ers the probability of errors in the maintenance and development.



(3) In our approach, low-level rendering calls, shader programs, and
primitives are exposed in the network, while the high-level func-
tionality remains on the server. Original source code as well as
original model assets are not transferred over the network, there-
fore protecting intellectual property.

(4) High performance computing (CUDA, OpenCL, etc.) is not yet
supported in mobile devices. With ReWeb3D, high level computa-
tions are performed on the server while low level rendering com-
mands are executed on the client.

6.3 Conclusions

Our approach complements other fundamental approaches to web
based 3D visualization, e.g., WebGL standalone applications and
image based rendering.

Applications with a focus on preprocessing, relatively static data,
and implementation of rendering effects done on the GPU can be
migrated with low effort. Upon execution, analysis and processing
can be conducted on the server. Only the visual results have to be
transferred.

In contrast, applications relying heavily on fixed functionality and
OpenGL 1.2 / OpenGL 2.0 immediate mode rendering or highly
dynamic data are difficult to migrate. Support for these APIs by the
framework would require major implementation effort because they
either require additional client-side implementation, or repeated
communication between client and server (e.g 3D games).

6.4 Future Work

Future work includes: (1) investigating the use of binary exchange
formats and compression for geometry data, (2) increasing debug-
ging capabilities, (3) balancing workload between client and server,
(4) planting small pieces of code in the client at runtime, for added,
locally executed functionality. (5) streaming data from external
sources, map tiles, video, directly to the client without the need
to pass through the server. (6) enabling client-side, dynamic anima-
tions, with the client receiving a high-level scene representation and
considerable additional implementation, based on existing code on
the server-side.
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