
Web Browser-based Social Distributed Computing
Platform applied to Image Analysis

Mikel Zorrilla, Angel Martin, Iñigo Tamayo, Naiara Aginako, Igor G. Olaizola
Vicomtech-IK4

GraphicsMedia.net
Donostia - San Sebastian (Spain)

Email: {mzorrilla, amartin, itamayo, naginako, iolaizola}@vicomtech.org

Abstract—In this paper we introduce a new platform to
perform image processing algorithms over big data. The main
stakeholders of media analysis are the social services which
manage huge volumes of multimedia data. While social service
providers have already a big resources pool of connected assets
through the devices of the community, they are not exploiting
them for their processing needs and they usually deploy high
performance systems that run batch works. Image processing
requires parallelizable atomic and lightweight tasks that can
benefit from a big community of thin devices executing seamless
background processes while the user enjoys other social media
contents. To provide such infrastructure a client-side browser
solution based on JavaScript libraries has been developed. We
also describe a performance model that establishes the contexts
where the solution gets ahead in terms of available resources and
the processing problem nature.

I. INTRODUCTION

With rapid advances in multimedia production and the
explosion of social media, the volume of multimedia that must
be processed, analysed and tagged brings big data challenges.
At the same time, dramatic decrease in the cost of commodity
computing components brings large distributed computing
platforms with tens or hundreds of thousands of unreliable
and heterogeneous hosts. Grid systems cope with intensive
processing tasks but barely face uncertainty of availability
performing tasks with best-effort policy capturing all the
required resources. Nowadays, Cloud Computing solutions rise
to overcome elasticity in order to track processing request
volume. All these solutions boost processing by deploying a
monolithic, for grid, and elastic, for cloud, purpose-specific
infrastructure. Future solutions must be driven by social and
connectivity paradigms.

Social computing is an emerging field, which encompasses
a diverse range of topics. It is mainly exploited as a vehicle for
establishing and maintaining mainstream communication rela-
tionships between enterprises and customers. Major motivation
of Social Business trends pursue the burgeon opportunities to
monetise social knowledge, emphasising social intelligence.

However, a computing-oriented dimension for collabora-
tive computing has not been explored yet. Social computing
systems provide extra value than what is offered by computer
systems alone. However, the next generation of the Internet
envisages the Web as a computing rather than just publishing
platform. This umbrella term has also been associated with
Cloud Computing.

The rapidly increasing use of the Web as a software
platform with truly interactive applications is boosted by
emerging standards such as HTML51 is removing limitations,
and transforming the Web into a real application platform
middleware tackling hardware resources of the devices through
JavaScript [13][12][1][15].

Common multimedia processing tasks such as segmenta-
tion, clustering and classification of multimedia streams from
contents stored in a repository can be easily divided and
distributed in atomic tasks. We can break up data into frames
that can be processed independently as frames from different
scenes can be considered unrelated. This lets us divide a
large stream into small chunks that a thin device can analyse
comparatively quickly. In this way, servers can dispatch the
work to users willing to donate their spare CPU cycles.

Our approach deploys a promising solution to cope with the
big data problem behind the batch analysis of the social media
managed in a social service. This paper introduces a distributed
user device platform on top of a social media community. The
service provider takes benefit of the huge processing capacity
of its big social community to seamless perform atomic image
processing tasks. To achieve it, these lightweight works are
embedded by the server to the different social content accessed.

This paper provides a state-of-the-art of big data infrastruc-
tures from on-going volunteer computing projects to web based
distributed processing frameworks. We also summarise current
image processing libraries exploiting browser capabilities of
the user devices through JavaScript. The social distributed
computing paradigm is also explained in the article giving
rise to a system proposal to run multimedia analysis, making
user device farm suitable for big data. A system architecture
is detailed and we present performance models concluded
from computational patterns studied in representative research.
We introduce some image processing use cases where this
infrastructure fits. Last but not least, a technical validation of
our proposal is done emphasising on the performance.

II. RELATED WORK

Current image processing research mainly focuses on algo-
rithm accuracy and infrastructure performance. Putting aside
the first area, the analysis of huge datasets of multimedia
content is a typical ’big data’ problem that requires massive
computational resources. On the one hand, buying that amount

1HTML5 standard specification (May 2011) http://www.w3.org/TR/html5/



of computational power would be incredibly expensive. On the
other hand, main stakeholders of image processing solutions
are the social media companies such as YouTube, Facebook or
Twitter. Better and deeper tagging means increased relevance
and more linked contents to engage user audience. These
companies could avoid to invest in computing infrastructures,
because they would have already available a huge network of
user devices connected to their servers, removing the energy
impact of high-performance computing systems.

Social computing research has been mainly focused on
enabling technologies and specific applications guided by
key directions including the emerging fields such as web
science and dynamic network analysis, and the movement from
social informatics to social intelligence, with an emphasis on
managing and retrieving social knowledge. However, the future
research lacks a core set of general scientific principles and a
framework to guide social distributed processing. Putting aside
the supporting technologies behind, Social Cloud research
oversees a new type of computing paradigm, that inherits all
the benefits provided by the conventional cloud but deployed
over social community users who collectively construct a pool
of resources to perform computational tasks.

SETI@home2 is probably the main example of scientific
experiment that uses Internet-connected computers in the
Search for Extraterrestrial Intelligence (SETI). Users partic-
ipate by running a free program that downloads and analyses
radio telescope data. But from the seed of this collaborative
network model, numerous initiatives3 related to unselfish re-
search such as astronomy, climate, astrophysics, mathematics,
genetics, molecular biology and cryptography have been raised
where volunteers and donors share the computing time from
personal devices.

Contrary to the previous initiatives our approach does not
require downloading or installation of client software, atomic
lightweight tasks are instead seamless embedded in a website
and performed through JavaScript engine. So users do not need
to be explicitly engaged to donate spare CPU cycles.

The most similar solution is brought by Plura Process-
ing4. It provides a distributed computing solution using the
web to power complex processing. The Plura affiliates earn
revenue or drive donations by connecting computers to Plura
network while their customers take benefit of one of the
largest sources of computing power at affordable on-demand
pricing. However, each approach focuses on different kind of
problems and exploits different technologies. Moreover, our
solution envisions a platform deployment on top of an already
established network endorsed by a social media community.

This work [10] builds a distributed computing network
based on a social graph of users you already trust assigning
tasks to different nodes based on social acquaintance. It anal-
yses several design options and trade-offs, such as scheduling
algorithms, centralisation, and straggler handling. Our solution
goes beyond providing the whole community resources to the
service servers for specific multimedia processing tasks.

2SETI@home Project (May 1999) http://setiathome.berkeley.edu/
3List of distributed computing projects (May 2013)

http://en.wikipedia.org/wiki/List of distributed computing projects
4Plura Processing Service (2008) http://www.pluraprocessing.com/

The great exponent of generic purpose massively collabo-
rative computation with web technologies is MapReduce [2].
This framework for processing parallelisable problems was
used by Google to completely generate Google’s index of the
World Wide Web. It defines a programming model for process-
ing large data sets with a parallel, distributed algorithm on a
cluster. Available solutions forks [9] from open source Apache
Hadoop5 frameworks. This technology overcomes server-side
tasks dispatching over a set of nodes. The highlights of
this work [4] are ubiquitous nature of the image matching
problems analysing some image processing algorithms specifi-
cally implemented for MapReduce technology. Another image
processing projects hold by this technology are: HIPI6 [11]
that provides an API for performing image processing tasks
in a distributed computing environment; and many more789.
Current research goes further aggregating client-side nodes to
work together with the server ones. In this direction, JSMapRe-
duce10 [8] is an implementation of MapReduce which exploits
the computing power available in the computers of the users of
a web platform by giving tasks to the JavaScript engines of any
web browser. The atomised nature of multimedia processing
tasks tackled in our work does not fit in with the MapReduce
policy oriented to server side dispatching protocols.

Regarding JavaScript multimedia processing libraries there
are an increasing number of solutions: IM.js11 faces pixel
image comparison; Resemble.js12 deals with image analysis
and comparison; Processing.js13 addresses video and audio
manipulation; Pixastic14 manage pixel data access and ma-
nipulation of the image bringing color adjust, histogram,
desaturate, edge detection, noise removal; jsfeat15 provides
image resample, equalise histogram, canny edges, fast corners
feature detector, Lucas-Kanade optical flow, HAAR object
detector, BBF object detector, linear Algebra module (Gaus-
sian elimination solver, Cholesky solver, SVD decomposition,
solver and pseudo-inverse, Eigen Vectors and Values) and
Multiview module (Affine2D motion kernel, Homography2D
motion kernel, RANSAC motion estimator, LMEDS motion
estimator); ccv handles face detection and object detection16;
nude.js17 detects skin and body. All these features joined with
JSMapReduce provide simpler and unique frontend for web
developers that only must focus in JavaScript code writing and
the results interpretation of multimedia analysis algorithms.

In terms of algorithm performance, historically JavaScript

5Apache Hadoop framework (2005) http://hadoop.apache.org/
6Hadoop Image Processing Interface (2012) http://hipi.cs.virginia.edu/
7EyeALike similarity across large datasets (2012) http://www.eyealike.com/
8Gum Gum in-image advertising platform (2012) http://gumgum.com/
9Kalooga discovery service for image galleries (2012)

http://www.kalooga.com/
10JSMapReduce JS library (2013) http://jsmapreduce.com/
11IM.js Image comparison pixel by pixel (2013)

http://tcorral.github.io/IM.js/
12Resemble.js Image analysis and comparison (2013)

http://huddle.github.io/Resemble.js/
13Processing.js multimedia processing framework (2013)

http://processingjs.org/
14Pixastic JavaScript Image Processing Library (2009)

http://www.pixastic.com/lib/
15jsfeat Computer Vision library (2013) https://github.com/inspirit/jsfeat
16ccv Computer Vision library (2013) https://github.com/liuliu/ccv
17nude.js Nudity detection with JavaScript and HTMLCanvas (2010)

http://www.patrick-wied.at/static/nudejs/



has been inefficient when compared to languages like C and
C++, but Mozilla is recently bringing near-native application
performance to the web Emscripten18, an LLVM-to-JavaScript
Compiler to translate C and C++ code into asm.js, a JavaScript
subset for Firefox browser. This potential combined with the
Mozilla’s Web Workers solution to run scripts in background
threads for Firefox browsers could provide the most powerful
pure web platform for big data processing. However, it requires
not only to translate the algorithms code through Emscripten
but also it can only be performed on Firefox browsers. How-
ever, the browser ecosystem is heterogeneous (Chrome, Opera,
Safari, IE) and the solution must fit in all of them.

Our goal is to advance current distributed computing ap-
proaches adding the social dimension and going into detail for
multimedia processing purposes. To this end, our contribution
in this paper is mainly twofold. First, we investigate the
potential of the social distributed computing paradigm by
introducing a design that construct distributing computing
services. Second, we profile the potential of our approach to
define the most suitable computationally-intensive problems
regarding management overhead for task split and results
splice.

III. SYSTEM ARCHITECTURE

The designed system architecture is based on a client-
server architecture (Figure 1). It is completely oriented to have
Web-based clients over HTML5, including specific JavaScript
libraries. These specific purpose libraries are added inside a so-
cial media Web-based service transforming the client browser
into a seamless image processing resource for the server. All
the clients communicate with a main server interface through
the Social Distributed Computing Manager (SDCM), which is
in charge of attending them, balancing the load and distributing
the requests through the different web servers available for the
service.

Obviously, the different hardware and software stacks of
the heterogeneous devices, span a wide spectrum of capabil-
ities and performance. Emerging JavaScript libraries play a
crucial role profiling the device capabilities to avoid impact
on the user Quality of Service. Thus our approach uses min-
imal client resources to avoid affecting the user’s experience.
Thereby, on a first step, an initial process is launched in the
client in order to evaluate the client device benchmark. Hence,
the server decides to assign or not a processing task. In case of
suitable devices, the rated analysis algorithm complexity and
the image dimensions to be processed are matched according
to this score. From that moment on, the data transfer begins
between the social service client and the server delivering an
image or a video frame and the order to process the data. This
request includes the image processing algorithm or function to
run for that image, the results format, etc.

On a second step, if the server has dispatched and set up
a task, the client JavaScript engine will start the background
work thread seamlessly while the user continues enjoying the
social media service. Once the processing task is finished,
the web browser will send the obtained result to the server

18Emscripten LLVM-to-JavaScript Compiler (2013)
https://github.com/kripken/emscripten

Fig. 1. System Architecture

triggering a new processing task request to the server in order
to provide idle awareness.

These fragmented work tasks will be processed by the
client along the user accesses a content from the social media
service. So the server is responsible for managing the task
distribution and monitor if the results are correctly received. In
other case the server deals with uncompleted tasks re-sending
them to another clients.

The following sections present a more detailed description
of the different modules of the system architecture.

A. Client Architecture

The client is composed by several modules that are showed
in Figure 2:

Communication Layer: This module is responsible for
bridging the client-server communications, implementing the
data and message protocols widely supported by HTML5 and
JavaScript such as Websockets and AJAX. The WebSocket
Protocol enables two-way communication between a client
running untrusted code in a controlled environment to a
remote host that has opted-in to communications from that
code. The security model used for this is the origin-based
security model commonly used by web browsers. The protocol
consists of an opening handshake followed by basic message
framing, layered over TCP. The goal of this technology is
to provide a mechanism for browser-based services that need
two-way communication with servers that does not rely on
opening multiple HTTP connections [5]. However, even if the
Websocket implementation is in the roadmap of every Web
Browser, nowadays there are restrictions to use it specially in
mobile devices. A polling approach using Ajax technology,
widely supported by any browser, is defined as an alternative
to Websockets. Ajax (Asynchronous JavaScript and XML) is
a group of interrelated web development techniques used on
the client-side to create asynchronous web applications. With
Ajax, web applications can send data to, and retrieve data from,



Fig. 2. Client Architecture

a server asynchronously keeping visual fluidity and behavior
of the foreground Web application. Data can be retrieved using
the XMLHttpRequest object [7].

Main Service: This module is the main Web application. It
is a social media Web service where the user enjoys watching
media content, interacting with friends, etc. The service keeps
the highest priority to provide a good Quality of Experience
(QoE) to the user interacting with social media contents.
However, these applications do not usually require high com-
puting performance in the client. The following modules add
background processing tasks to the browser taking benefit of
the spare CPU cycles of the connected users without interfering
with the experience of the user with the foreground application.
This way the service can enhance the tagging of the managed
contents in order to empower content relevance and discover
content relations boosted by the social community engine.

Performance Control: This module is a transversal task
which is in charge of assessing client browser performance to
distinguish client-side capabilities for extra job. If the client
device is busy and cannot carry out additional work the other
modules cease claiming incapable. In contrast, if the device
can deal with concurrent tasks, all the modules in the client
system start running and processing information.

Data: This module cope the transference of data between
the client and the server. On the one hand, it will be very close
to the Communication Layer to exchange data and messages
with the server and on the other hand it will create and maintain
the HTML5 Web Storage facilities for the received data. Once
the local processing of the video frame is done, it will be
also the responsible to adequate the results and send it to
the Communication Layer to be transferred to the server. It
is important to highlight that our solution is entirely run in
memory by the web browser and do not access or record any
client information.

Processing Engine: This is the core module of the client
since it is the responsible to inject the downloaded image

Fig. 3. Server Architecture

processing script, and run it with the downloaded frame. It
also formats the obtained results to be sent to the server. It is
based on two sub-modules:

• JS Module Manager: This module is in charge of
the JavaScript image processing scripts injection and
management. While the user is interacting with the
social service, this module is the responsible of prepar-
ing and loading the scripts to be executed seamlessly
without any impact in the user experience.

• Data Abstraction: This module adapts and formats
the results of the execution of the script to be ready
to send them to the server. The server will send
information about how to prepare the output data so
this module will format it to the adequate structure.

Image Processing API: This module benefits from the
approach proposed in this paper by accessing to a simple Image
Processing API in the server. Based on JavaScript code, it
hides algorithms complexity and connects different methods to
obtain specific features and they will be executed on a batch
way through the different client browsers.

Distributed Computing Layer: This module is the orches-
trator delegate running background tasks at end devices such
as computers, tablets, smartphones, TVs, etc. by coordinating
all the client-side modules to execute both the main social
application and the other background processes concurrently
and in a seamless way for the final user.

B. Server Architecture

Figure 3 depicts the different modules of the server:

Communication Layer: This module manages the com-
munications between the server and the clients. As it is



mentioned in the client side, this layer is deployed on top of
Websockets and AJAX communication protocols to exchange
data and messages.

Performance Filtering: This block profiles the capabilities
of each client in order to assess a specific task suitability. Each
client will report its processing capability through a test done
by the Performance Control to the server. According to the
achieved score the server matches the different tasks depending
their processing needs.

Data Exchange: It deals with data exchange (e.g. a image
frame, scripts, etc.) through the communication layer between
the client and the server.

Distribution Module: This is the core tasks dispatcher
through the clients allocating the task, the image frame, the
script and the needed information (how to format the answer,
etc.). This module coordinates the communication layer, data
exchange and performance filtering, but also communicates
with the Data Manager and with the Resources (Image frames
and image processing scripts).

Data Manager: This module interfaces the relational data-
base which contains the information of the global tasks that
should be done, in terms of what image processing scripts
need to be applied to each image. This way, the Distribution
Module will be able to assign a specific task relating a frame
and a script following the priorities specified in the Data
Manager. The relational data-base contains also information
about the processing weight of the different scripts to fix to
the performance capability of the client. This module is also
responsible of gathering all the processing results and store
them in the data-base.

IV. USE CASES

The architecture described in the previous section is quite
generic purpose oriented. In order to land the concept behind
to specific social computing needs, we describe here some
concrete image processing topics that fit on our approach while
gather the main interests for social services are:

• Face detection and recognition for face similarity and
recognition across a dataset.

• Logo recognition for image content based advertising.

• Character recognition for image content based auto-
tagging for social media.

• Near similarity detection for image based video copy-
right protection.

The aim for the different images is always to retrieve results
independent from other contents, so the temporal dimension
and correlation is completely removed from the distributed
processing platform. Our perspective restrains problem com-
plexity by removing the need of a subsequent multiple results
consolidation. This way the social server would not need high
demanding postprocessing to join client-side results that would
mean processing overhead at the server-side.

Our target scenario is YouTube like social media services.
This context provides a perfect environment for our system
thanks to:

• Longer and continuous user sessions for videos. In
contrast to text based social communities, it provides
high availability of the resources with a more stable
infrastructure in terms of elasticity.

• Not multi-task activities while watching videos. Users
underuse their devices where background tasks can
execute without interfering with the user experience.

• Residual overhead. The overhead of the data to be
analysed is residual compared with the mainstream
content.

• Continuous communication channel. The high transfer
rate of a streaming server bridges a stable communi-
cation with lower latency.

It is very important to highlight that our solution manager
anonymises the content to be analysed and the assigned tasks
are entirely run in memory by the web browser and do not
access or record any client information.

V. PERFORMANCE MODELING

The performance of the proposed approach can be theoret-
ically analysed by following the PRAM model [6]. According
to this model, each processor has access to the shared memory
and can also do computation on a local memory. However, this
model has some drawbacks as it assumes that all processors
work synchronously and that interprocessor communication
is free. To overcome this limitations Culler et al. propose
the LogP model [3]. The model is based on the following
parameters:

• L: an upper bound on the latency or delay in com-
municating messages from the source to the target
module.

• o: the overhead defined as the time that a processor is
engaged in the transmission/reception of each message
and cannot perform other operations.

• g: the gap or the minimum time interval between
consecutive message transmissions/receptions at a pro-
cessor.

• P : the number of processor/memory modules.

However, this model does not fit distinctly with the ap-
proach proposed in this paper as is it intended to deal with
complex network topologies and simple processing units.
Moreover, the LogP model is accurate only at the very low
level hardware stack and not for practical communication
systems with layers of protocols (e.g. TCP/IP).

In our case, the network topology is a star where processing
nodes can dynamically be added or removed. It implies that:

• One processor acts as the central processor.

• Every other processor has a communication link with
this central processor.

• Congestion may happen at the central processor (dis-
patcher).

• Remote processors can deal concurrently with mes-
saging and processing tasks.



As a generalisation of PRAM and removing the overhead
o of LogP, Valiant [14] proposes the Bulk Synchronous Par-
allel (BSP) model. In this model, each processor can follow
different threads of computation and tasks are organised as
supersteps. A supersteps includes three stages.

1) Concurrent Computation (asynchronous)
2) Communication
3) Barrier Synchronisation

The cost of a BSP algorithm is the total cost of the sum
of all supersteps, and the cost of each superstep is given by
Equation 3:

Csuperstep =
p

max
i=1

(wi) +
p

max
i=1

(hig) + l (1)

CT =

S∑
s=1

Ws + g

S∑
s=1

Hs + Sl (2)

W =
p

max
i=1

(wi), H =
p

max
i=1

(hi) (3)

where:

• p = number of processors

• S = number of supersteps

• l = synchronisation periodicity

• g = communication cost

• h = maximum number of incoming or outgoing mes-
sages per processor

• w = computation time

In our case, the communication channel is granted through
the already established video streaming flows. It ensures good
communication performance for relatively small data commu-
nications. When the required bandwidth is comparable to the
video transmission bitrate, it may alter the QoS and g would
increase.

The synchronisation periodicity could be removed for many
use cases where the Social Distributed Computing Manager
(SDCM) creates independent tasks. For example, to process
all the instances of a database can be considered as a big
single superstep that synchronises when all the databased is
processed. In this case, we could model the computational cost
as:

CT = Ws + gHs + l =
p

max
i=1

(wi) +
p

max
i=1

(hig) + l (4)

However this assumption does not allow the fact that
fastest processors can start a new task once they finish the
previous one. To do that, we define the model from the process
perspective. According to this view, we can consider the total
cost as the time needed by the network of resources to process
each independent task by means of average communication and
processing costs (Equation 5).

CT =
Ŵs

pu
+

ĝĤs

pt
+ Sl (5)

TABLE I. ESTIMATED PROCESSING AND COMMUNICATION
PROPERTIES FOR DIFFERENT TYPES OF DEVICES.

ID Device Connectivity Average
Bandwidth

Average
GFLOPS

(m) Mobile phone UMTS 3Mbit/s 0.05
(t) Tablet Wifi 8Mbit/s 0.08 (19)

(p) PC DSL 20Mbit/s 2.5
(s) Server SATA 6Gbit/s psx82.8 (20)

In order to estimate the benefit of the presented approach
compared with local processing, we can apply the same cost
model (Equation 5) to a local multicore processor. In this
case, the data access will be much faster but the number of
processors might be much lower.

In order to give a comparative estimation, we will consider
4 types of devices with different connectivity and processing
power (Table I).

Hs depends on the algorithm implementation, not on
the device or communication infrastructures. So it is closely
related to the defined use cases. Tasks are considered as batch
processes, thus, it will not be contemplated in the cost compar-
ison. The Sl factor will be reflected as a internal management
factor that will require some computational power at the server
side to be consolidated. However, it will not incur in extra time
cost per operation as local parallel processing at the client
side. Keeping in mind that we are in a streaming session
context, initial delays can be disregarded as the data needed
to communicate the server and the remote processors are
directly added to the ongoing stream. The following equations
depict a breakdown of the cost estimation under the conditions
specified by Table I. fxy represent the utilisation factor of the
resources that will be available to process the tasks. In order
to avoid any annoyance in the user experience, f will be set
to 0.15 both for bandwidth and for processing power. The cost
to establish a new thread and its management its denoted by
m̂. It is a fixed estimated value and mainly considers the cost
on the server side.

Equation 6 represents the sum of the partial costs of the
different type of end devices (mobile, tablet and PC) while
equation 7 models the computational cost of each individual
group of devices with similar characteristics.

CT =

(
n∑
i

1

Ci

)−1

(6)

Ci =

∑
Wi

fpi · Fi · pi
+

∑
gi

fbi · b̂i · pi
+ m̂ · pi (7)

Following the same model, the cost of a multicore server with
a single internal shared memory is:

Cs =
W

fps · Fs · ps
+

g

fbs · b̂sps
+ m̂ · ps (8)

In order to compare a distributed computing approach
with a dedicated local server, different CT and Cs have been

19http://www.tomshardware.com/reviews/fx-8150-zambezi-bulldozer-
990fx,3043-14.html

20http://www.legitreviews.com/article/1988/2/



0 10 20 30 40 50 60 70 80 90 100
10

2

10
3

10
4

10
5

Lineal increment of processors

C
om

pu
ta

tio
na

l C
os

t t
o 

pe
rf

or
m

 W
 (

Lo
g 

S
ca

le
)

W=4.0e+14, g=1.0e+05 mg=0.01 

 

 
Mobile Phone from 1800 to 180000
Tablet from 800 to 80000
PC from 50 to 5000
Total Distributed
Local Server from 1 to 100 processors

(a)

0 10 20 30 40 50 60 70 80 90 100
10

2

10
3

10
4

10
5

Lineal increment of processors

C
om

pu
ta

tio
na

l C
os

t t
o 

pe
rf

or
m

 W
 (

Lo
g 

S
ca

le
)

W=4.0e+14, g=1.0e+09 mg=0.01 

 

 
Mobile Phone from 1800 to 180000
Tablet from 800 to 80000
PC from 50 to 5000
Total Distributed
Local Server from 1 to 100 processors

(b)

0 10 20 30 40 50 60 70 80 90 100
10

2

10
3

10
4

10
5

10
6

Lineal increment of processors

C
om

pu
ta

tio
na

l C
os

t t
o 

pe
rf

or
m

 W
 (

Lo
g 

S
ca

le
)

W=4.0e+14, g=1.0e+05 mg=0.80 

 

 
Mobile Phone from 1800 to 180000
Tablet from 800 to 80000
PC from 50 to 5000
Total Distributed
Local Server from 1 to 100 processors

(c)

0 10 20 30 40 50 60 70 80 90 100
10

5

10
6

10
7

10
8

Lineal increment of processors

C
om

pu
ta

tio
na

l C
os

t t
o 

pe
rf

or
m

 W
 (

Lo
g 

S
ca

le
)

W=4.0e+17, g=1.0e+05 mg=0.80 

 

 
Mobile Phone from 1800 to 180000
Tablet from 800 to 80000
PC from 50 to 5000
Total Distributed
Local Server from 1 to 100 processors

(d)

Fig. 4. Computational cost estimation under different sizes of work load (W ) communication cost (g) and thread management cost (m̂) .

calculated. Figure 4 shows different cases of performance
behaviour for several values of model parameters. A lineal
increment of processors is compared for different sizes of W
g and m̂. As it can be observed, the maximum benefit of
our proposed social computing network is obtained for those
use cases with higher computational load. The communication
costs can be the main bottlenecks unless bandwidth conditions
or utilisation factor are increased. Figure 4c shows that the
efficient management of all the created threads becomes a
critical factor as well.

VI. VALIDATION

In order to provide some reference experimental values for
the parameters involved in the theoretical performance model-
ing in a specific context, we have compared the performance
of a distributed computing architecture with a dedicated local
server approach. We have implemented the same testbed for
both scenarios: processing of an image using JSFeat libraries

in distributed devices and the OpenCV libraries for the stan-
dalone local server execution. The testing image resolution was
1200x1600 and compressed in JPEG. The processing method
consisted on applying a grayscale converter and a Canny
detector due to the necessity of finding reciprocal functions
in both libraries to provide a homogeneous framework.

As validation parameters two elapsed times have been mea-
sured, the global processing time, which includes streaming of
the image to be analysed and the actual algorithm processing,
and the computation time that just includes the algorithm
runtime. We have calculated the mean and the variance of 100
task samples. For distributed approach, client-side devices we
used a computer, a tablet and a smartphone. As can be seen
in Table (II), most of the global processing time is used for
algorithm computing, justifying the capacity of this kind of
architectures to minimise data streaming time consumption in
relation to global processing time.



In conclusion, obtained results are coherent with the as-
sumptions taken in the theoretical model and the relations of
the different parameters involved. Even more, comparison of
these results with the outcome of a standalone server execution
(see Table III) underline the opportunity of using web based
distributed platforms as a solution for large scale processing.

TABLE II. MEAN AND VARIANCE TIME CONSUMPTION FOR
CLIENT-SIDE DEVICES IN A DISTRIBUTED ARCHITECTURE.

Architecture
Client-side
(JavaScript)

Global
Process
µ (ms.)

Computation
µ (ms.)

Global
Process
σ2

Computation
σ2

CPU 3 dual core 258 240 42 18
Asus Eepad trans-
former

2710 1744 97 73

Nexus 4 1694 1537 156 130

TABLE III. MEAN AND VARIANCE TIME CONSUMPTION FOR LOCAL
STAND-ALONE PROCESSING.

Architecture
Server-side
(OpenCV)

Global
Process
µ (ms.)

Computation
µ (ms.)

Global
Process
σ2

Computation
σ2

CPU 2.3 dual core 277 101 24 37

VII. CONCLUSIONS

The social distributed computing platform leverages the
computing power of potentially thousands of devices to come
up with a cheap, flexible solution for social media analysis.
Users contribute a fraction of their computing time. Despite the
lower efficiency, compared to stand-alone and Grid solutions,
the barrier to entry is low thanks to the potential larger cluster
to reach an astounding number of machines for social services.
This context enables us to solve big data problems previously
unachievable. To be more specific the main stakeholders of
image processing, the social services, can apply background
work for batch analysis over the whole social media dataset.

However, the infrastructure deployment must keep in mind
requirements and constraints of social services. On the one
hand, there is a major requirement attached to keep the Quality
of Service means to avoid draining the users’ bandwidth
and processing power. On the other hand, the solution must
deal with resources availability due to the high elasticity
related to the spontaneous presence nature of users. These
conditions settle the framework of the image processing work
which implies the necessity of atomic and lightweight image
processing tasks.

The proposed system spreads over a client-server archi-
tecture working totally over Web-based clients. Emerging
JavaScript technology enables to manage and run seamless
background tasks while the user interacts and enjoys a social
media service without affecting to the Quality of Experience.
The approach provides a community of devices as a resource
for computing tasks and there is no need to install or develop
client applications but adding a distributed computing layer to
the HTML-based main service.

Regarding a performance modeling over an adapted BSP
model, the maximum benefit of the proposed social distributed
computing platform is obtained for use cases with high compu-
tational load. This fits with the social media service providers
needs, that often require complex image analysis processes for
a huge volume of data. The target scenario is a social media

content service (like YouTube) providing a favorable scenario.
It brings beneficial fetures such as continuous communication
channel, residual overhead compared with the video itself, not
multi-task user activity, device underuse and longer sessions
that foster high availability of resources for the distributed
computing tasks.

In addition, validation experiments back up the theoretical
performance modeling and remark the opportunity of using
the Web-based social distributed computing solution for large
scale processing in comparison with the outcome of a server
grid approach.

To conclude, the proposed system deploys a promising
solution to cope with the big data problem that the social
media service providers deal with, through a social distributed
computing platform. Service providers benefit from the huge
processing capacity of the social community adding to the
main service, via web browser, seamless background process-
ing tasks for image analysis.

REFERENCES

[1] M. Anttonen, A. Salminen, T. Mikkonen, and A. Taivalsaari. Trans-
forming the web into a real application platform: new technologies,
emerging trends and missing pieces. In Proceedings of the 2011 ACM
Symposium on Applied Computing, pages 800–807. ACM, 2011.

[2] F. Catak and M. Balaban. Cloudsvm: Training an svm classifier in
cloud computing systems. 7719:57–68, 2013.

[3] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. Logp: towards a realistic model
of parallel computation. SIGPLAN Not., 28(7):1–12, July 1993.

[4] G. De Francisci Morales, A. Gionis, and M. Sozio. Social content
matching in mapreduce. Proc. VLDB Endow., 4(7):460–469, Apr. 2011.

[5] M. A. Fette, I. The websocket protocol. 2011.
[6] S. Fortune and J. Wyllie. Parallelism in random access machines.

In Proceedings of the tenth annual ACM symposium on Theory of
computing, pages 114–118. ACM, 1978.

[7] J. J. Garrett. Ajax: A new approach to web applications. 2005.
[8] P. Langhans, C. Wieser, and F. Bry. Crowdsourcing mapreduce:

Jsmapreduce. pages 253–256, 2013.
[9] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, and Z. Zhang.

Moon: Mapreduce on opportunistic environments. pages 95–106, 2010.
[10] A. Mohaisen, H. Tran, A. Chandra, and Y. Kim. Socialcloud: Using

social networks for building distributed computing services. CoRR,
abs/1112.2254, 2011.

[11] C. Sweeney. Hipi: A hadoop image processing interface for image-
based mapreduce tasks. B.S. Thesis. University of Virginia, Department
of Computer Science 2011., 2011.

[12] A. Taivalsaari and T. Mikkonen. The web as an application platform:
The saga continues. In Software Engineering and Advanced Applica-
tions (SEAA), 2011 37th EUROMICRO Conference on, pages 170–174.
IEEE, 2011.

[13] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A. Salminen. The death
of binary software: End user software moves to the web. In Creating,
Connecting and Collaborating through Computing (C5), 2011 Ninth
International Conference on, pages 17–23. IEEE, 2011.

[14] L. G. Valiant. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8):103–111, 1990.

[15] M. Zorrilla, A. Martin, J. Sanchez, I. Tamayo, and I. Olaizola. Html5-
based system for interoperable 3d digital home applications. Multimedia
Tools and Applications, pages 1–21, 2013.


