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The integration of Clinical Decision Support Systems (CDSS) in nowadays clinical environments has not
been fully achieved yet. Although numerous approaches and technologies have been proposed since
1960, there are still open gaps that need to be bridged. In this work we present advances from the estab-
lished state of the art, overcoming some of the most notorious reported difficulties in: (i) automating
CDSS, (ii) clinical workflow integration, (iii) maintainability and extensibility of the system, (iv) timely
advice, (v) evaluation of the costs and effects of clinical decision support, and (vi) the need of architec-
tures that allow the sharing and reusing of CDSS modules and services. In order to do so, we introduce
a new clinical task model oriented to clinical workflow integration, which follows a federated approach.
Our work makes use of the reported benefits of semantics in order to fully take advantage of the knowl-
edge present in every stage of clinical tasks and the experience acquired by physicians. In order to intro-
duce a feasible extension of classical CDSS, we present a generic architecture that permits a semantic
enhancement, namely Semantic CDSS (S-CDSS). A case study of the proposed architecture in the domain
of breast cancer is also presented, pointing some highlights of our methodology.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

During the last 50 years numerous technologies for clinical
decision support have been proposed worldwide (Blomqvist,
2012; Wright and Sittig, 2008; Holsapple, 2008; Berner, 2007).
The benefits given by clinical decision support systems (CDSS)
have also been broadly stated: e.g. they provide medical profes-
sionals with knowledge at appropriate times and manner. In gen-
eral CDSS (i) facilitate an efficient and effective decision making
about individual patients, (ii) reduce preventable medical errors
and (iii) improve the quality of healthcare provided to patients
(Berner, 2007; Peleg and Tu, 2006).

Nevertheless, the integration of such systems in daily clinical
environments has not been fully achieved yet (Osheroff et al.,
2007). Several authors have reported the factors affecting this lack
of success (Peleg and Tu, 2006; Sittig et al., 2008; Kawamoto et al.,
2005; Osheroff et al., 2007; Das and Eichner, 2010; Friedlin et al.,
2007; Holbrook et al., 2003; Garg et al., 2005; Niès et al., 2006;
Greenes, 2006; Liu et al., 2006) and have identified and reported
the main challenges that current CDSS need to bridge.

1. The first of these challenges is that decision support should be
computerized and not paper-based (Kawamoto et al., 2005).
Current trends are oriented towards the development of com-
puter-based medical guidelines, as reported by Isern and
Moreno (2008). However, actual knowledge representation
models for clinical guidelines do not prioritize reasoning as it
could be argued that they are mainly focused on alignment
and integration of data. These approaches, although signifying
a stepping stone towards the inclusion of semantics in CDSS,
still lack of the exploitation of the knowledge embedded in
the aligned data, and thus, improvements in knowledge repre-
sentation and reasoning capabilities are still in need.

2. A second aspect being reportedly identified is the fact that clin-
ical workflow integration is recognized as a key aspect for CDSS
(Holbrook et al., 2003; Kawamoto et al., 2005; Das and Eichner,
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2010). The importance of workflow integration is evident in the
direct impact in the minimization of time consumption during
the introduction of patient data and results. In this sense efforts
should be done for the integration of CDSS with clinical systems
already present in hospitals and medical centers (Holbrook
et al., 2003; Das and Eichner, 2010). Additionally, CDSS should
be presented as complete solutions that assist clinicians during
all different tasks of their daily duties, and not only during spe-
cific activities. This fact would promote and normalize the use
of clinical decision support.

3. The third challenge states that the design of the system should
be developed to allow maintainability and extensibility (Peleg
and Tu, 2006). Hence, cost-save solutions are needed to main-
tain the underlying knowledge model and the criteria for rea-
soning of the system. For that purpose, there is a need for
creating knowledge representations that are sufficiently trans-
parent to be understood directly by domain experts (Greenes,
2006). At the same manner, easy-to-use, and technology-trans-
parent tools for domain experts need to be developed. Ease of
use is not only conveyed towards GUI enhancements, but also
in allowing medical practitioners to visualize and edit the
knowledge models and criteria for the reasoning in a simple,
yet powerful way. Apart from that, and following the same
learning paradigm as clinicians, the knowledge and criteria
embedded in CDSS should evolve with daily experiences
(Berner, 2007). Therefore, experience-based approaches are
needed.

4. The fourth challenge states that timely advice should be pro-
vided in CDSS (Holbrook et al., 2003; Peleg and Tu, 2006). The
aforesaid leads to the need of fast reasoning processes, aimed
to provide real time, or quasi-real-time, responses from those
semantically enhanced clinical decision support systems.

5. The fifth challenge is related to the evaluation of the costs and
effects of the CDSS itself (Sim et al., 2001; Peleg and Tu, 2006).
Therefore, mechanisms for the quantitative and qualitative
evaluation of the performance of the system, as well as of the
quality of the knowledge and the models in it should be pro-
vided (Liu et al., 2006).

6. The last challenge states that there is a need of creating an
architecture oriented at sharing and reusing CDSS modules
and services (Sittig et al., 2008).

Our contribution is aimed at overcoming these reported diffi-
culties. To this end, we firstly propose a new clinical task model
oriented at the integration of CDSS to the whole clinical workflow.
The presented model is both, cyclic and federated.

In our work we propose a generic architecture for Semantic
CDSS (S-CDSS), which follows the clinical task model. We have
implemented our proposed architecture within the framework of
a research project dealing with breast cancer as case study.

We present also an evaluation methodology for our architec-
ture. Such methodology will be applied in the planned evaluation
process of the aforesaid research, which will be taking place during
2013.

Our previous work in CDSS architectures is completely aligned
with the ideas proposed in this article. Particularly, in Toro et al.
(2012) we proposed the development of an architecture aimed to
the early detection of Alzheimer’s disease (AD). It was able to learn
following the same paradigm as physicians, which consists of
fine-tuning criteria with the experience acquired during day-to-
day tasks. In that work we proposed a vertical architecture based
on five layers (i.e. data, translation, ontology and reasoning,
experience, and application) and the use of semantic technologies
and experience-based reasoning processes. It was specifically
focused on the discovery of new knowledge in the system; which
in the case of early detection of AD would be a clear benefit.
Nevertheless, it did not approach other current challenges of deci-
sion support, such as (i) the integration of CDSS during all different
stages of the clinical workflow, (ii) the automation of CDS, or (iii)
the evaluation of the quality of the performance and the knowl-
edge on the system. Therefore, we have evolved our previous
vertical architecture into a federated approach based on multi
agent systems.

This article is arranged as follows: in Section 2 the related work
relevant for our approach is presented; in Section 3 our contribu-
tions related to the clinical task model and the generic architecture
for S-CDSS are proposed; in Section 4 a case study of the
architecture for the breast cancer domain is presented; in
Section 5 an evaluation methodology for our architecture is pre-
sented, and finally, in Section 6 conclusions and future work are
summarized.

2. Background concepts

In this section we describe the framework of ideas in which our
system is build upon. We first introduce the different tasks of the
care process and then we present a short overview of solutions
and technologies applied to CDSS covering experience-based,
semantic and multi agent-based approaches.

2.1. Clinical tasks and decision support

During daily clinical practice, clinicians perform a series of tasks
framed in the care process, which include diagnosis, prognosis,
treatment, evolution and prevention.

Diagnosis is the process that identifies the syndrome or the dis-
ease of the patient (Bickley and Szilagyi, 2003). As every symptom
can refer to multiple causes, physicians need to narrow the possi-
bilities. In order to do so, physicians first gather the clinical history,
which consists of asking the patient about (i) relevant details of the
symptoms of the disease, (ii) past medical history, (iii) family his-
tory, and also (iv) about habits related to work and leisure. Physical
explorations (i.e. auscultation, palpation, inspection and olfaction)
are then performed by physicians to detect the signs of the disease
that patients cannot sense. Finally, complementary explorations
such as functional tests, image-based diagnostic tests, endoscopies,
biopsies, laboratory tests, and electrocardiography tests, increase
or decrease the likelihood of the diagnosis.

Prognosis is the process of generation of a set of forecasts about
the pathologic process that affects the patient, such as life expec-
tancy, total or partial functional recovery to treatment and future
complications (Banerjee and Watson, 2011; De Castro, 2006; Roz-
man, 2006).

Treatment implies the understanding the global effects of a
diagnosed disease on a patient, which can be physical, psychical,
economical and social, for the prescription of the appropriate ther-
apeutic resources, i.e. hygienic, dietetic, pharmacologic, physical,
surgical, psychological (Rozman, 2006; De Castro, 2006). An effec-
tive communication with patients and their social environment
(e.g. family and caregivers), is also an essential part of the
treatment.

The evolution of the patients during their disease is controlled
by following up the effects of the treatment and the recovery pro-
cess (De Castro, 2006; Rozman, 2006). Chronic disease manage-
ment is particularly focused on this stage.

Prevention is the process aimed at avoiding a disease (Gérvas
et al., 2008), which can be oriented at immunizations and vaccina-
tions and health education, amongst others (Rozman, 2006).

Decision making plays an essential role during these stages and
it is hypothesized that decision support resources aid physicians to
carry out them in a more effective and efficient manner (Osheroff
et al., 2007).
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2.2. Experience-based clinical decision support

Different technologies have been proposed for CDSS since 1960.
Power (Power, 2008) summarizes the different approaches of deci-
sion support systems (DSS) in general, in five groups: (i) model dri-
ven systems, based on simple quantitative models which are
defined by limited data and parameters that decision makers need
when analyzing a situation (Mathe et al., 2009); (ii) data-driven
systems, based on the access and manipulation of huge amounts
of data (Rinott et al., 2011); (iii) communications-driven systems,
which use network and communications technologies to facilitate
decision-relevant collaboration and communication (Fortney et al.,
2010); (iv) document-driven systems, which use computer storage
and processing technologies to provide document retrieval and
analysis (Power, 2008), and finally (v) knowledge-based systems,
that contain knowledge about a particular domain, the under-
standing of problems within that domain, and skill at solving some
of these problems (Kalogeropoulos et al., 2003).

Since physicians are already using knowledge and their experi-
ence to make decisions, in our work we implicitly show that expe-
rience-based systems are yet to be considered as a new category in
(Power, 2008), when applied to the clinical domain.

With that challenge in mind, previous works using case-based
reasoning have been proposed (Frize and Walker, 2000; Aamodt
et al., 2010), but they do not consider the possible evolution of
the underlying knowledge model, which occurs indeed in real clin-
ical domains. Machine learning approaches are also present in the
literature (Eom et al., 2008), although they require arguably a high
cost during system training.

Therefore, for building CDSS we propose in our work the use of
experience modeling and reasoning techniques, such as SOEKS and
DDNA (Sanin et al., 2007; Sanin and Szczerbicki, 2008). With the
use of these technologies CDSS not only integrate in the decision
making process of physicians during clinical workflow, but they
are also able to learn from the everyday experiences as well as phy-
sicians do.

2.3. Semantic and multi-agent based CDSS

Semantic technologies have reportedly been described in the
literature as a promising approach to solve knowledge handling
and decision support in the medical domain (Gnanambal and
Thangaraj, 2010; Lindgren, 2012; Blomqvist, 2012; Hussain et al.,
2007; Yu and Jonnalagadda, 2006). In particular, ontologies are
very promising, as presented by Mahmud et al. (2011), Farion
et al. (2009), Abidi et al. (2007), Subirats and Ceccaroni (2011)
and Houshiaryan et al. (2005). They are defined by Gruber (1995)
in the computer science domain as the explicit specification of a
conceptualization.

For clinical decision support, ontologies can efficiently fulfill the
needs for (i) organized and standardized terminologies, (ii) reus-
ability at a structural level and (iii) knowledge representation
models for reasoning and inferring of new knowledge (Houshiar-
yan et al., 2005; Yu and Jonnalagadda, 2006).

In our work we hypothesize that a yet unreportedly need of
CDSS is the reutilization of the knowledge gathered among the dif-
ferent clinical stages, as is done by physicians during their different
decisions. Nevertheless, we have not found in the literature re-
ported approaches covering this aspect. For instance, Colantonio
et al. (2009) present an interoperable and standardized CDSS based
on ontologies and a rule-based reasoner tool, intended to integrate
the system in the whole clinical workflow. However, the different
clinical stages are proposed as separate tasks, and therefore no di-
rect reutilization of knowledge between the stages is supported.

We intend to bridge this aspect with the combination of seman-
tic technologies and Multi -Agent Systems (MAS). The latter are
applications in which many autonomous software agents are
combined to solve large problems that are beyond the individual
capabilities or knowledge of each agent (Isern et al., 2010;
Flores-Mendez, 1999). MAS are defined by four main characteris-
tics: (i) each agent has incomplete capabilities to solve a problem;
(ii) there is no global system control; (iii) data is decentralized;
and, (iv) computation is asynchronous (Sycara, 1998).

Different MAS have been already proposed for medical applica-
tions in general, and for clinical decision support in particular
(Isern et al., 2010; Paranjape and Sadanand, 2010; Laleci et al.,
2008; Shirabad et al., 2012). They are mainly oriented at the reuti-
lization of medical resources distributed in different health cen-
ters. The work presented in Shirabad et al. (2012) shares some
ideas with our approach. They focus on supporting the entire clin-
ical decision making process with the use of MAS, although no
knowledge reutilization is supported between the different stages,
as separate decision systems are proposed for each stage. Addition-
ally, no learning mechanisms based on user experience are
provided.
3. Proposed model and architecture for a Semantic CDSS

In this section we propose our Semantic CDSS (S-CDSS) that in-
tends to bridge some of the challenges described in Section 1. In
our approach we focus on clinical workflow integration, by formal-
izing clinical tasks as cyclic and federated processes. This model
imposes some technological and architectural requirements to
the S-CDSS, which allows us to effectively address also the rest of
the identified challenges.
3.1. Proposed clinical task model

Decisions made by physicians largely depend on the knowledge
available at the moment of decision making. However, conclusions
could change by new gathered evidence or even posterior medical
results (Rozman, 2006). In other words, decisions made during
each stage of clinical tasks, are not final by any means, as exempli-
fied in the cycle in Fig. 1. The cyclic inspiration is found in the work
of Ortiz-Fournier and Ramaswamy (2010).

In our work, we partially share the aforesaid view with the ulte-
rior evidence that the different stages do not necessarily need to
form part of the cycle and could also act independently. Further-
more, we believe that such models do not take into account the
role of the decision maker missing theoretically important inputs.

A decision maker in this context, would potentially handle the
knowledge involved in the whole clinical workflow and also learn
from every situation, in order to apply the experience acquired in
future decisions (Rozman, 2006).

It is this fact that makes an urgent necessity of clinical task
models supporting reutilization of knowledge among different
stages.

All these characteristics can be achieved only if each stage in the
model is both (i) independent, but (ii) at the same time is related to
a central entity that controls the generated knowledge for its
reutilization.

The aforesaid characteristics are similar to the concept of feder-
ation in politics, where a type of sovereign state is characterized by
a union of partially self-governing states united by a central gov-
ernment (Xing and Shengjun, 2010).

For the aforementioned reasons, we propose the combination of
a cyclic and federated Clinical Task Model (CTM) (Fig. 2). In our
model, diagnosis, prognosis, treatment, monitoring and prevention
are partially independent stages, which (i) follow a cyclic paradigm
and (ii) are united to a central decision maker. The central decision
maker consists generally of a multidisciplinary team of clinical



Fig. 1. Example showing clinical decision making process for a patient apparently suffering from cold.

Fig. 2. Proposed clinical task model and its connection to S-CDSS.

E. Sanchez et al. / Pattern Recognition Letters 34 (2013) 1758–1768 1761
professionals that collaborate together to make the different deci-
sions involved during clinical tasks. CDSS will also be located in the
center of our CTM together with the decision maker team.

In order to fit in the CTM, the proposed CDSS must provide (a)
specialization, to cover the different tasks performed during the
stages, (b) control, to handle the knowledge and the performance
of the system, and also (c) knowledge reutilization. Both specializa-
tion and control capabilities are adequately approached by multi-
agent systems (MAS), where each agent can be oriented at specific
tasks, also covering inter-agent communication and synchroniza-
tion. On the other side, knowledge reutilization is supported by
the application of semantic technologies. With the combination
of those, we propose the concept of Semantic CDSS (S-CDSS).
3.2. Proposed architecture

Fig. 3 depicts an overview of our architecture. At the top, the
users of the systems are shown, which could be (i) clinicians or do-
main expert users, (ii) patients, (iii) patient relatives or caregivers,
and (iv) medical institutions, associations or hospitals. They inter-
act with a multi-agent based system, explained in detail in
Section 3.3.

Some of the tasks performed by the latter require the access to
patient clinical data or the storage of the obtained results. Data
are located in the data repository, which consists of (i) a set of
databases (DB), such as clinical systems, electronic health record
(EHR) repositories, medical image repositories, picture archiving



Fig. 3. Proposed architecture for clinical decision support.

1762 E. Sanchez et al. / Pattern Recognition Letters 34 (2013) 1758–1768
and communications systems (PACS), and drugs & interactions
DB, and (ii) a set of data sources, like physiological signal acqui-
sition devices (ECG, EEG, respiration rate and effort, spirometry,
oximetry, temperature) or other patient monitoring devices. In
particular, the different data bases and sources in the repository
may be heterogeneous in terms of serialization formats,
communication protocols, size, implemented security levels, and
location.
The Multiagent system will also perform reasoning tasks, which
are based on a knowledge and decision model, stored in the knowl-
edge repository. We call this model the KREG model, as we have di-
vided it into four layers: (i) Knowledge, (ii) Rule, (iii) Experience,
and (iv) Clinical Guidelines.

The Knowledge layer contains a set of domain ontologies
describing the classes and properties covered by the CDSS. The
set of domain ontologies comes from user experience gathering
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and some other domain ontologies used in the medical domain,
such as ontologies in Bioportal (Whetzel et al., 2011).

The criteria for the reasoning is expressed in terms of rules pro-
vided by domain experts and is contained in the Rule layer. Ade-
quate tools will be given to allow expert users edit both
ontologies and rules.

Additionally, clinical process models and recommendation cri-
teria coming from clinical guidelines and protocols will be included
in the Clinical Guideline layer. Recommendation criteria will be
mapped to the rule layer.

Finally, during execution time, for every action performed by a
user, the variables, rules, functions and constraints involved in the
decisional event are stored in the Experience layer.

3.3. Multiagent architecture

The use of an agents-based paradigm provides the system with
the required modularity (Sycara, 1998), and in this way scalability
is also intrinsically accomplished by the system. In order to achieve
the latter, our system supports the inclusion of new agents, which
could be implemented in the future and then incorporated. These
new agents could fulfill for instance specific functions belonging
to other medical sub-domains, so that their inclusion could broad-
en the decision support services offered by the architecture and the
domains for which it is applied.

Fig. 3 depicts an overview of our architecture. There are nine
distinct agents: (i) information agent, (ii) data translation agent,
(iii) knowledge and decision agent, (iv) standards and interopera-
bility agent, (v) reasoning agent, (vi) experience acquisition agent,
(vii) application agent, (viii) user profiling agent and (ix) major-
domo agent.

3.3.1. Information agent
This agent accesses the information stored in the data reposi-

tory of the architecture. It is in charge of handling (saving, retriev-
ing and editing) data and deals with the corresponding web
services and data accessing language and protocols.

3.3.2. Data translation agent
The approach for clinical workflow integration presented in the

previous section requires that plain information of the system is
semantically enhanced to support richer reasoning processes. In
order to do so, the data translation agent performs the mapping
of the data structure in the data repository to the KREG Model.

3.3.3. Knowledge and decision agent
The knowledge and decision agent deals with the creation, edi-

tion and visualization of the KREG Model, and it is aimed at guar-
anteeing the maintainability and extensibility of the knowledge in
the system. Tools adapted to each of the four layers of the KREG
Model are proposed: (i) graphical ontology editors and tools for
knowledge extraction from evidence-based medicine (Straus
et al., 2011) sources; (ii) tools for rule edition and visualization,
as well as for the extraction of the decision criteria embedded in
the clinical guideline semantic models; (iii) tools for the visualiza-
tion and navigation of decisional events in the experience model of
the system; and finally (iv) tools for extracting the knowledge from
clinical guidelines.

3.3.4. Standards and interoperability agent
The standards and interoperability agent is in charge of aligning

the KREG model with standards that will provide the system with
interoperability for the communication with other clinical systems
and possible CDSS. It will also allow the creation of shareable and
understandable clinical decision support services, which open new
business models for clinical decision support, e.g. Clinical Decision
Support As A Service (CDSaaS). Standards covered by this agent
include (i) EHR related standards, such as HL7 (Berson, 2012) and
ISO 13606 (Santos et al., 2010), (ii) standardized ontologies, as
for instance SNOMED CT (Nyström et al., 2010), ICD-10 (Merabti
et al., 2010), UMLS (Merabti et al., 2010), as well as (iii) standards
for clinical guideline representation (GLIF) (Patel et al., 1998).
3.3.5. Reasoning agent
The reasoning agent interacts with the KREG Model, a classical

semantic reasoning tool and the query engine, in order to obtain
inferred responses that will aid clinicians during decision making.
In our previous work, we have studied fast querying and reasoning
techniques used to provide time efficient performance. We use
Reflexive Ontologies (Toro et al., 2008; Artetxe et al., 2013) to pro-
vide quasi-real time responses from those knowledge sources.
Reflexive Ontologies store the queries that have already been made
in a query structure which is a new class added to the original
ontology, where individuals are the queries and the corresponding
pointers to answers. Thus, every time a new query is made the an-
swer is searched first within this class, and is only computed if it is
not present there.
3.3.6. Experience acquisition and handling agent
The experience acquisition and handling agent gathers and

stores the experience of clinicians or other users in the system,
providing automatic maintenance and updating of the KREG
Model. For this purpose, variables, functions, constraints and rules
involved in every decisional event are handled.
3.3.7. Application agent
The application agent is in charge of the interaction between

the user and the system, that will be held by graphical user inter-
faces (GUI) oriented at different purposes: (i) decision support, (ii)
authoring tools for the edition or visualization of the underlying
models, and (iii) patient interface for accessing clinical results,
non-clinical results and physiological signals coming from user
medical devices. Visual analytic techniques will be presented to
facilitate the visualization of patient data, criteria for decision, next
steps on the process, and most probable diagnosis or suitable treat-
ments for a specific patient, among others. The main objective of
the application agent is to be easy, in order to facilitate the work
to clinicians and increase the acceptability of CDSS for their inclu-
sion in the clinical workflow.
3.3.8. User-profiling agent
When a user is logged in, the user-profiling agent characterizes

it, using the minimum number of parameters that could character-
ize user behavior and user attributes. There exist some user char-
acterization modules such as GOMS (Gray et al., 1993) and
CommonKADS (Hasan and Isaac, 2011), that present implementa-
tion and logic modules for user characterization.
3.3.9. Majordomo agent
The majordomo agent is in charge of the synchronization and

control of the agents in the platform. We follow a blackboard ap-
proach (Craig, 1995) where agents are explicitly not allowed to
talk to each other. For that purpose they must interact through
the majordomo. Thereby, security issues are reduced and incon-
sistencies due to simultaneous communications between differ-
ent agents are avoided (asynchronism). Whereas the rest of the
agents are specialized in different task, the majordomo agent spe-
cialization is the control and performance of the rest of the
system.
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4. Case study: breast cancer

We have implemented this architecture within the research
framework of the Spanish project LIFE (Life Consortium, 2012) as
case study for the Breast Unit (BU) of the Valencia University
General Hospital.

BU are multidisciplinary teams of physicians that work comple-
mentarily to treat breast cancer patients. The main characteristic of
the BU is that decisions about the healthcare process of patients
are made both, individually and collectively. Weekly the most crit-
ical cases are analyzed together during a plenary meeting and rel-
evant aspects of their treatment are agreed. Therefore, risky
decisions depend on the combination of the knowledge and expe-
riences of different professionals.

In particular, the medical team in the LIFE project is formed by
the following services: (i) radiodiagnosis, (ii) nuclear medicine, (iii)
radiotherapy, (iv) rehabilitation, (v) anatomical pathology, (vi)
general surgery, (vii) medical oncology, and (viii) psychology.

In order to support both, individual- and team-work of the BU,
our system must provide integration at the levels of (a) clinical
data and results from the different services, (b) domain knowledge
and criteria for the decisions involved in each of the services, and
(c) the experience acquired during the individual and collective
decision making process.

To do so, we have implemented the nine-agent based architec-
ture presented in Section 3. For each agent the following four char-
acteristics have been defined: (i) an id, (ii) the description of the
corresponding roles or tasks carried out, (iii) a status, which can
be whether idle, running, or stopped, and (iv) an in/out inter-agent
communication channel, called the talker.

The talker is used by the majordomo agent for communicating
the rest of the agents when to start running and, if needed, which
agent to connect. The strategy to decide which agent to launch is
given by the functional dependencies established by each task.
For instance, for the task of providing recommendations about a
treatment to a clinician: (1) the Reasoning agent is launched first
in order to obtain the recommended treatments; (2) during the
reasoning process, the access to some patient clinical data may
be needed (Information agent); (3) then the User profiling agent
characterizes the clinician, and (4) the Application agent provides
this user a personalized interface with decision support on
treatments.

At data level, a mySQL database has been proposed for the uni-
fication of the former eight different databases of the hospital (a
database per medical service). We call it LifeDB and it contains
all information needed by the team of physicians to make deci-
Fig. 4. Overview of th
sions. Our industrial partner has been leading this unification, (i)
analyzing the current databases, (ii) gathering the requirements
and needs of each of the services that should be covered by the
new design, and (iii) then aligning such databases.

The data structure of LifeDB is aligned with the KREG model in
the knowledge repository. To do so, we have implemented the
translation agent, which creates two xml documents in real time
every time data is created or modified in LifeDB: (i) one xml docu-
ment containing the structure of the data and (ii) another contain-
ing the query calls to those data in LifeDB. These two xml
documents are programmatically loaded to the Knowledge Layer
of the KREG model.

In particular, we have implemented the Knowledge Layer with
three ontologies, as we argued in our previous work (Sanchez
et al., 2011) that SNOMED CT (Nyström et al., 2010), SWAN (Cicca-
rese et al., 2008) and a domain ontology are sufficient for the mod-
eling of the underlying knowledge of a CDSS. The three ontologies
are: (i) SNOMED CT, for clinical description of the patient, the
breast cancer and the procedures involved during its diagnosis
and treatment; (ii) SWAN, for bibliographic endorsement of criteria
for decision making, and (iii) a new domain ontology of breast can-
cer, containing the results of the specific clinical tests carried out to
patients that we name the Life Ontology. A partial view of the Life
Ontology is depicted in Fig. 4.

The Rule Layer of the KREG Model consists of an initial set of
production rules generated by the medical professionals of the
BU. These rules model the different decisions attached to each ser-
vice. In our implementation, rules follow an IF-THEN-ELSE struc-
ture and are both, (i) weighted within an importance hierarchy
of rules, and (ii) endorsed by the corresponding bibliographic
source. This implementation follows the syntax presented in our
previous work (Sanchez et al., 2011), where a rule syntax similar
to Rule ML is proposed and serialized following an xml-based
paradigm.

The knowledge and decision agent implements tools and tech-
niques oriented to medical domain experts, for the edition and
visualization of these production rules and domain ontologies.
Graph-based visualization engines have been developed for this
purpose.

The application agent is the one in charge of the interaction be-
tween the system and the user, which is in our case a medical pro-
fessional. Therefore, it shows different web-based graphical user
interfaces (GUI) for each of the different tools provided to the
users: (i) an interface to enable remote access to the gathered pa-
tient data and to facilitate the introduction of the clinical results of
each service; (ii) an interface for the graph-based visualization,
e LIFE Ontology.



Fig. 5. Example screenshot of the data gathering interface.
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edition and mapping of ontologies; (iii) a visual rule editor to ease
the generation and the maintainability of rules and decision crite-
ria, and (iv) an interface which reports recommendations support-
ing the decision as a pie chart, with their attached bibliographic
proof. Fig. 5 shows an example screenshot of the data gathering
interface.

The reasoning process to infer the corresponding diagnoses,
prognoses, treatment plans, monitoring plans and prevention ac-
tions is handled by the reasoning agent. In order to provide such
mechanisms, we have developed a series of methods pro-
grammed using the Protégé OWL API. The semantic reasoning
process is based on the Pellet reasoner tool and we have im-
planted the fast querying technique of Reflexive Ontologies (RO)
(Toro et al., 2008; Artetxe et al., 2013) in order to speed up the
reasoning time.

In the Experience layer of the KREG model, DDNA and SOEKS
technologies have been implemented using their ontology form
(Sanin et al., 2007). The experience acquisition agent implements
a reasoning process that enables the evolution of the initial set of
rules with experience, as was presented in our previous work (Toro
et al., 2012). More specifically, for each decisional event, the sys-
tem stores both, the output of the reasoner and the final decision
made by the corresponding physician. Decisions that do not follow
the output of the reasoner drive an evolution of the set of rules in
the KREG Model.

5. Evaluation methodology

The implementation of our system has been carried out in a real
clinical environment and a deep and methodological evaluation of
the system will be performed during 15 months starting in June
2013.
Following the work presented by Bürkle et al. (2001), our in-
tended evaluation methodology, consists of four parts: (i) verifica-
tion, (ii) validation, (iii) evaluation of the human factors, and (iv)
evaluation of the clinical effects of the system.

5.1. Verification

Verification is the process of checking whether the develop-
ment of the system complies with specifications (Bürkle et al.,
2001) in terms of provided support for the recommendations. In
our case it is trivially done by manual verification.

5.2. Validation

Validation is the process of checking whether the developed de-
sign carries out tasks adequately during a real clinical environment
(Bürkle et al., 2001). Let Rt ¼ fr1; r2; . . . ; rKtg be the set rules of the
KREG Model at time t, which contain the criteria for decision mak-
ing embedded in the S-CDSS. We assume that the knowledge
embedded in the system is time-varying, and therefore the set of
rules may change in time. More specifically, in (Toro et al., 2012)
we described the possible changes as fine-tuning of rules, depreca-
tion or creation of new rules. Each rule is a tuple rk ¼ hak; qk;wk; bki,
where ak denote the antecedents of the rule, qk denote the rule con-
sequent, wk, is a rule weight, and bk is the bibliographic endorse-
ment. Let D ¼ fd1; d2; . . . ; dDg be the set of different decision
domains considered in the S-CDSS. Examples of such decision
domains are the diagnosis of a patient, the type of treatment pre-
scribed, and the quantity of drug doses, amongst others. For each
decision domain di the system outputs a collection of decision
tuples oi ¼ fdpi;1;dpi;2; . . . ;dpi;C1g. A decision tuple is given by
dpij ¼ hcij; pij;Riji, where cij, is a selected decision value, pij, is the
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probability attached to that decision value, and Rij is a set of rules
that provide the supporting evidence for the aforementioned value.
Rij is formed by the rules rk whose consequent qk are equal to the
selected decision value cij, being Rij ¼ frkjqk ¼ cijg.

In our validation two different aspects will be checked: (i) sim-
ilarity between the output of the system and the final decision
made by physicians, and (ii) reduction of the error as the experi-
ence is acquired by the system.

5.2.1. Similarity between the output of the system and the final
decision of physicians

Both, quantitative and qualitative analysis will be carried out in
order to validate whether our system infers appropriate results or
not.

We define, for the quantitative analysis a similarity measure
S(fi, oi) between (i) the system output decision oi (collection of
decision tuples) inferred for each decisional event di and (ii) the fi-
nal decision fi made by physicians. At this point, the similarity
measure compares the decision value selected by the physician
versus the output given by the reasoning tool.

Experimental design: We will collect data corresponding to oi

and fi of 1000 decisional events, of 10 different decision domains
applied to 100 patients. S(fi, oi) will be calculated for each deci-
sional event and cases where the normalized similarity value is
higher than the 90% will be counted as true positives. As a result
of our validation we will report sensitivity of the system, as well
as similarity measure distributions by patient and by decision.

The qualitative evaluation will be performed from a short ques-
tionnaire filled by the physicians stating their own supporting evi-
dences. This trace of the physician reasoning will be compared
with the recommendations of the S-CDSS.

5.2.2. Reduction of the error with the experience
The experience-based evolution process of rules needs to be

also validated. For this purpose after 12 months the same patient
data will be introduced again in the system. At this time, the sys-
tem will contain an evolved version of the ruleset, Rt1, and thus, in-
ferred outputs could differ from previous ones.

Analyzing the new output for every decisional event allows to
measure the increasing of similarity with the physician response
relative to the initial rule set Rt0. From this analysis we will con-
clude the effectiveness of this agent.

5.3. Human factor evaluation

The human factor evaluation process consists of checking the
usefulness of the system, its usability and the satisfaction of the
user with the different aspects of the system (Bürkle et al., 2001).
Both quantitative and qualitative measures will be obtained.

The qualitative analysis will be focused on a questionnaire
where physicians can provide their opinion about usability and
utility of the system. The results obtained will be studied for
improving the system in a future work.

The quantitative analysis, on the other side, will be based on a
log, storing the number of times physicians have voluntarily ac-
cessed the decision support module. These statistics will be com-
pared with the answers in the questionnaires in order to
conclude which of the reported factors are in fact the most influen-
tial ones.

5.4. Evaluation of the clinical effects

Finally, the evaluation of the clinical effects of the system will
be carried out comparing statistical outcome quality indicators
(i.e. number of diagnosed patients, number of treated patients,
number of recovered patients) for (i) the last 12 months before
the LIFE system was integrated in the hospital and (ii) the first
12 months of use of it. Possible external changes in between, such
as new medical infrastructure acquired by the hospital or changes
in available personnel will be taken into account.

6. Conclusions and future work

In this article we have presented a generic software architecture
of S-CDSS, oriented to bridging some of the reported challenges of
clinical decision support.

Our main contribution consists of a new clinical task model
where the different clinical information processing stages (i.e.
diagnosis, prognosis, treatment, evolution and prevention) are as-
sumed as a cyclic chain of federated information processing agents.
On the basis of this clinical task model, our architecture permits
the integration and reutilization of decision support systems along
the whole clinical workflow.

Our previous work on CDSS focused on the discovery of new
knowledge (implicit). In this article we contribute advances in or-
der to bridge remaining CDSS challenges. We have presented de-
tails about the implementation carried out in the breast cancer
domain, and about the evaluation methodology that will be used
to test the system. Evaluation at the clinical level requires lengthy
data gathering processes; in that matter validation results will be
available and published in a future work.

In our approach it is not possible to perform a classical valida-
tion, where a training data set is used to build the system and a val-
idation data set is used to evaluate it. This is related to the nature
of our system of being based on a knowledge model provided by a
team of domain experts. Due to the aforesaid reasons the correct-
ness cannot be guaranteed with a classical metric. Our system as-
sumes that the model is correct, and we validate this model
comparing decisions recommended by the system with decisions
made by end-users (physicians), in order to evaluate discrepancies
from a real world decision maker solution.

As future work we will study the full computerized automation
of the decision support. We will focus on the acquisition of deci-
sion criteria and rules directly from current available knowledge
sources, such as clinical guideline repositories and Evidence Based
Medicine databases. In particular, we will work on the extraction of
the recommendations contained in clinical guidelines. We will
model these recommendations as rules, which will feed the Rule
Layer of the KREG Model. For this purpose, we will explore natural
language processing techniques.

Additionally, we will also work on the application of decision
support standards for the modeling of the knowledge and criteria
in the system, in order to provide a universal clinical decision sup-
port service.

Finally, we aim to explore methodologies and tools for the qual-
itative and quantitative evaluation of knowledge and experience
stored in the system.
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