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Abstract: Key point extraction and description mechanisms play a crucial role for image matching, where several image
points must be accurately identified to robustly estimate a transformation or recognize an object or a scene.
Currently several new mechanisms for key point extraction and for feature description are emerging, so nor-
malized data and evaluation protocols are needed in order to assess them accurately. In response to these needs,
we present a new evaluation framework for measuring different aspects and behaviours of the state-of-the-art
feature point extraction and description mechanisms. In addition, we also propose a new image dataset and a
testing image generator. This evaluation framework and dataset can be useful to help the research community
improving their key point extraction and feature descriptor approaches. Also, the practitioners on computer
vision applications, based on image point matching, can obtain valuable information from this contribution to
select the algorithm that best suit their needs. All proposed material in this work is freely available on-line.

1 INTRODUCTION

Interest points extraction and matching is nowadays
a common task in many computer vision based ap-
proaches, which are applied in many different do-
mains, such as 3D reconstruction, object recognition,
camera tracking and augmented reality. Key point
extraction and description mechanisms play a crucial
role during image matching processes, where several
image points must be accurately identified to robustly
estimate a transformation or recognize an object. Cur-
rently there is an increasing activity in the develop-
ment of new approaches for key point extraction, de-
scription and matching, trying to get more robust and
computationally lightweight approaches. In this way,
we think that normalized data and evaluation proto-
cols are needed in order to assess them accurately.

In this work, we present a new testing framework,
an image dataset, and a testing image generator for
the evaluation of the state-of-the-art key point extrac-
tors and feature point descriptors. This appraisal is
done by measuring several algorithm features, such
as repeatability, accuracy and invariance to affine
transformations or photometric transformations. Our
new proposed testing dataset comprises both a trans-
formed image generator, that allows generating new

images with geometric and photometric transforma-
tions, and a set of real images acquired with different
types of sensors and conditions, showing also varia-
tions in both geometric (such as similarities or affini-
ties) and photometric transformations. The dataset of
real images, the image generator with the evaluation
framework form a useful tool to help in the selection
of the proper algorithm to develop computer vision
applications based on image point matching, and to
improve or develop new approaches for key point ex-
traction or point matching. The paper is structured
as follows: section 2 provides a brief description on
key point extraction and feature descriptors and an
overview of some evaluation framework and testing
datasets. Section 3 describes the proposed framework
for feature point descriptor evaluation. Sections 4
and 5 describe both the proposed acquired real image
dataset and transformed image generatorin and finally
section 6 gives final remarks and depicts the future
work.



2 RELATED WORK

Several computer vision based applications rely on
the identification or matching of several discrete
points extracted from the images. Although this is
a very common task, depending on the nature of such
applications, the requirements for a specific key point
extractor and descriptor may vary. For example, ap-
plications related with self-navigation or simultane-
ous location and mapping (SLAM) would require a
fast key point extractor algorithm because of its real-
time restrictions. On the other hand, an application
for object or image recognition would benefit from
more robust or better invariant key point extractor;
even if this implies a higher computation time. In
the context of point matching, a robust key point can
be understood, in general, as a point of the same
structure in the scene that is able to be extracted and
matched even if some types of geometric or photo-
metric transformations occur between different image
acquisitions.

In (Tuytelaars and Mikolajczyk, 2008) the authors
suggest that there are several parameters of a point
detector and feature descriptor that can be measured;
they also cite the most relevant ones. However, mea-
suring some of them, such as the point extractor ac-
curacy, descriptor robustness or invariance needs a
normalized test protocol and test benchmark. In this
way, the seminal works of (Mikolajczyk and Schmid,
2005) settled the basis for key point extractor and fea-
ture description evaluations. Since then, several new
approaches for key point or region extraction (Miko-
lajczyk et al., 2007) and for feature descriptor (Bay
et al., 2006; Heikkilä et al., 2009; Bellavia et al.,
2010; Leutenegger et al., 2011) were tested against
their dataset and evaluated with their corresponding
scripts freely available online at ’www.robots.ox.
ac.uk/˜vgg/research/affine/index.html’.

In (Fraundorfer and Bischof, 2005) the author pro-
posed an extension of the work of (Mikolajczyk and
Schmid, 2005) by analyzing key point repeatability
for non-planar scenes, using tri-focal tensor geomet-
ric restriction for estimating the ground-truth data of
their own dataset. They found several differences in
key points repeatability scores when applied to non-
planar scenes. Recently, (Gauglitz et al., 2011) pro-
posed a dataset consisting of several videos of sur-
faces, with different types of textures and different
light conditions, which are used to evaluate key point
matching strategies oriented to camera tracking ap-
plications. The authors claim that due to restrictions
in the hardware they used to move the camera for
the generation of different points of view, they could
not reproduce exactly the same movements every time

they changed scene conditions. This implies that ho-
mographies are not the same and may bias the results
of the different algorithms. They used 4 markers at-
tached to each picture in order to compute image to
image homographies.

Very recently, in (Alahi et al., 2012) the authors
tested their new descriptor approach with the known
dataset and evaluation framework of (Mikolajczyk
and Schmid, 2002). However, they also tested their
descriptor with a non-publicly accessible approach in
computer-vision-talks.com, which is similar to
our evaluation framework proposal. This framework
allowed the authors to compare the robustness of their
descriptor against different geometric transformation
values, in the form of a ratio between correct and
wrong matches. The authors affirm that this approach
provides a very useful insight about the tested descrip-
tors.

Our dataset and evaluation framework is based
and inspired by the developments of (Mikolajczyk
and Schmid, 2005). In comparison to Mikolajczyk’s
approach, our dataset comprises a higher number of
images, with higher resolution and with better con-
trolled conditions.

We also include a set of images obtained with mo-
bile devices. We think that it is important to consider
some features of these devices, such as their low dy-
namic range, in a testing data. This is relevant since
mobile devices are becoming part of our everyday
lives and computer vision applications are increasing
their popularity. To the best of our knowledge, this
feature lacks in the available testing datasets.

In this way, our dataset includes a set of images
that can be used to evaluate the robustness of key
point extractors and descriptors approaches against
photometric transformations, such as luminance and
chrominance noise addition.

Finally, we also propose a transformed image gen-
erator that can be used to provide more testing images
to a given key point or descriptor evaluation.

All proposed material in this work, i.e. images,
code and binary executables will be freely available
on-line at ’www.vicomtech.tv/KeyPoints’.

3 EVALUATION FRAMEWORK

We have implemented an evaluation framework based
on the one present in the Open Source Computer Vi-
sion Library (OpenCV) (Bradski, 2000), derived from
the original work of (Mikolajczyk and Schmid, 2005).
This framework uses the class hierarchy implemented
in OpenCV that nicely decouples key point extraction
from key point description and descriptor matching.

'www.robots.ox.ac.uk/~vgg/research/affine/index.html'
'www.robots.ox.ac.uk/~vgg/research/affine/index.html'
computer-vision-talks.com
'www.vicomtech.tv/KeyPoints'


In this way, the user can easily define experiments
by mixing several point extractor with key point de-
scriptors and matchers. Whereas Mikolajczyk’s work,
where the framework is written in Matlab scripting,
our approach is written in C++. In the case of the
mentioned Matlab-based evaluation framework, the
user needs to generate both a file with detected key
points in a given image, and the corresponding key
points descriptors in order to evaluate them. The gen-
eration of these files can be cumbersome in some con-
texts, such as development of commercial computer
vision based applications, because the whole solu-
tion may not be tested in the same development plat-
form. We think that our approach helps in the evalu-
ation of future extractor or descriptor approaches be-
cause it can be easily integrated in a development en-
vironment, without the need to export additional data
to other platforms. Nevertheless, our approach also
supports the reading of Mikolajczyk file format, al-
lowing the comparison with previous approaches or
studies. Figure 1 shows partial results of an evalua-

Figure 1: Results of the evaluation of several feature de-
scriptors using the in-plane rotation.

tion conducted using the proposed dataset and eval-
uation framework. In addition to the precision-recall
curves proposed by (Mikolajczyk and Schmid, 2002),
we propose to generate more informative curves about
the performance of different approaches based on the
number or percentage of correct matches given spe-
cific values of the evaluated transformation. For ex-
ample, Figure 1 shows the result of the number of cor-
rect matches of several feature descriptors against a
dataset composed of several in-plane rotations of an
image. These preliminary results suggest that, for ex-
ample, BRIEF descriptors are not robust against a ro-
tation larger than 35 degrees approximately, or how
SURF approach is more sensitive to orientations like
90, 180 and 270 degrees, possibly due to discretiza-

tion effects related with the use of box filters for ap-
proximating LoG filtering. In this way, a better insight
of the behaviour of a given approach may be obtained.

3.1 Matching Evaluation

An image formation process is usually represented as
in Equation 1 where Xw represents world point, xi rep-
resent world points projected in the image. P repre-
sents the projection matrix, described in Equation 2,
where K describes the transformation from the cam-
era reference frame to the image reference frame, and
[R|t] the composition of a translation and a rotation
transformation between world and camera coordinate
systems.

xi = PXw (1)

P = K[R|t] (2)
When either world points Xw lie on a world plane,

or the images are acquired with a rotating camera
around its center of projection, the transformation be-
tween image points xi and world points Xw are related
by a 2D linear projective transformation or homogra-
phy H (Hartley and Zisserman, 2004).

As in the dataset proposed in (Mikolajczyk and
Schmid, 2002), in our proposed dataset all images are
related by a 2D homography HabD. This known trans-
formation is used as ground truth data, allowing to
know a priori where a point xiaD, extracted from im-
age a of dataset D, should be projected in image b of
the same dataset, by using Equation (3).

x jbD = HabDxiaD (3)

Similarly, points extracted from image b can be pro-
jected back to image a by using the inverse of HabD.
Let x̃ jbD be the estimated match of point xiaD in im-
age b obtained by the point detector algorithm. Then,
the known transformation HabD is used to measure the
accuracy and repeatability of a point detector algo-
rithm. This process is performed by computing the
Euclidean distance d between the estimated and the
ground truth points of a pair of images, as shown in
Equation 4.

di j = d(x̃ jbD,HabDxiaD)
2 +d(xiaD,H−1

abDx̃ jbD)
2 (4)

In order to estimate correct matches mab, as shown in
Figure 2, among all potential matches or correspon-
dences, i.e. point pairs xia and x̃ jb extracted from
images a and b respectively, we used the overlap er-
ror as proposed in (Mikolajczyk and Schmid, 2002).
This error measures how well two supporting regions,
usually ellipses or circles Ria and R jb, estimated by
point extraction algorithm from key points xia and x̃ jb



Figure 2: Correct matches(in green), wrong matches(in red)
between two images.

respectively, correspond under the known geometric
transformation Hab. In our case, this transformation
is described by an homography.

εs ≤ 1−
(

Ria∩HT
abR jbHab

Ria∪HT
abR jbHab

)
(5)

The point pair xia and x̃ jb that has lower error dis-
tance di j given by equation 4 and the lower over-
lap error given by equation 5 is considered as a true
match. The overlap error reduces the probability of
false positive matches. We calculate the ellipses over-
lap by using the software proposed in (Hughes and
Chraibi, 2011) and freely distributed by the author at
’www.chraibi.de’.

4 IMAGE DATASET

4.1 Acquisition Setup

Our image acquisition setup is composed by a DSLR
Canon 7D and an iPad with a 5 Mega pixels built-in
camera. In the Canon 7D scenario we used a Tam-
ron 17-50mm f2.8 and a Canon 100mm f2.8 macro
lenses. In addition to the camera, we used two Canon
580EXII flash with light diffuser, both operated wire-
lessly and synchronized with the acquisition. In the
case of the iPad setup we can not synchronize the light
with the acquisition, so we decided to use continuous
light source instead of flashes.

4.2 Geometric transformations

In order to generate a set of images with perspec-
tive distortion, we carried out an approach similar to
(Gauglitz et al., 2011). We used a Kuka robotic arm
with a Canon 7D attached with Tamron lens in order
to generate different points of view of the same tar-
get, as shown in Figure 3. The use of the robotic arm
allowed us to generate known, repeatable and precise
positions and trajectories around the target scene. We

also used a Wacom Cintiq screen for displaying im-
ages instead of using pictures placed in a wall or in
a table, as in (Gauglitz et al., 2011). Our set of dis-
played images covers different types of images with
structured or unstructured textures, with low texture,
or with repeating textures or patterns. Many authors
(Tuytelaars and Mikolajczyk, 2008; Heikkilä et al.,
2009; Gauglitz et al., 2011) agreed in the importance
of evaluating key point extractors and descriptors in
such different conditions, in order to truly evaluate
the robustness of their approaches.

The robotic arm is a KUKA LWR IV+, which has
7 joints, a payload of 7 kg and a repeatability of ±
0.05 mm. The desired position and orientation of the
robot’s end effector can be commanded from a remote
PC, using the KUKA Fast Research Interface (FRI).
The FRI provides a C++ high level interface, which
can be used to retrieve information of the robotic arm,
such as the tool’s Cartesian position/orientation, and
to implement different control strategies.

We decided to generate circular trajectories (arcs)
to obtain several points of view of the Wacom screen,
and therefore different values of captured perspective
distortion. The desired circular path is defined by
three points in the Cartesian 3D space, which are used
to calculate the different elements of the parametric
equation of a circle. The required orientation of the
camera at the initial and final points of the trajectory
can be defined independently of the circular path, al-
lowing different configurations in a flexible fashion.

The described trajectories are resampled accord-
ing to a desired number of points M along them,
where images are to be taken. The set Q =
{Q1,Q2, . . .QM} constitutes the resulting discretized
trajectory. Each Qi ∈ Q is 3x4 matrix that describes
the i pose (position and orientation) of the camera,
with respect to the robot’s base coordinate system,
where 1≤ i≤M. This means that the original circular
path is approximated in a piecewise linear way. Anal-
ogously, the orientation of the camera at each Qi is
determined by performing a linear interpolation of the
total rotation matrix RT , defined by RT = RM(R1)

−1,
where RM and R1 correspond to the rotation parts of
QM and Q1 respectively. Therefore, RT is applied in
M− 1 steps, which can be done easily using quater-
nion notation. Each element of Q is used as a set
point for the robot’s Cartesian controller. The points
in Q set are traversed in order. When the position and
orientation errors with respect to a particular point Qi
are below some predefined thresholds, a signal is sent
to the camera in order to take N pictures in a syn-
chronous way. At any point Qi the first picture to
be taken corresponds to the calibration pattern image;
then N−1 pictures of other images shown on the Wa-

'www.chraibi.de'


Figure 4: Some images of exposure varying dataset compound of 15 different images.

Figure 3: Image acquisition setup with Kuka robot arm and
Canon 7D attached.

com Cintiq screen are taken. While pictures are being
taken the robot holds its position. Figure 5 shows a 3D
reconstruction of a known generated arc trajectory of
the camera around the Wacom screen, from a circular
sector of radius equal to 0.4m, covering a total angle
of 70 degrees.

We used the calibration pattern image for calibrat-
ing the camera, i.e. estimate extrinsic and intrinsic
parameters, and also for accurate estimation of the ho-
mographies between images. We used the estimated

Figure 5: Recovered trajectory of a Robot driven image ac-
quisition.

camera calibration parameters for rectifying the dis-
tortion of the images acquired with the Tamron lens,
which has around a 2% of geometric barrel distor-
tion. The Canon 100mm macro lens is able to ren-
der images with almost negligible geometric distor-
tions. Geometric distortion can be considered as one
of many types of optical aberrations. These distor-

sions cause to the projection of incoming rays to the
optical system differ from the ideal position produced
by a distortion free model, such as a pinhole camera.
All images of our dataset are geometrically corrected,
thus neither barrel nor pincushion distortions remain.

4.2.1 Image Focus

In addition to the capability of generating unfocused
images with our image testing generator, we also cap-
tured real scenes because unfocused images are not
only Gaussian smoothed versions of a correctly fo-
cused image. The shape of the lens diaphragm and
the value of the lens aperture, which determines depth
of field, play an important role in the finally rendered
image; therefore it is not easy to simulate them syn-
thetically. We propose an image dataset where the fo-
cus point is progressively varying from a correct focus
point, i.e. all objects in the scene are accurately ren-
dered in images as sharp, to a point where all objects
appear blurred or unfocused, as shown in Figure 6.
In this subset of images, even if the camera was not
moved along the image sequence acquisition, changes
made in the camera focus required to compute the ho-
mography between images.

4.3 Photometric Transformations

Photometric transformations are also involved in the
process of image formation along with geometric
transformations. These transformations are related to
the camera settings, light conditions and the nature of
the camera hardware, mainly the camera sensor. As a
photometric transformation dataset, we propose a set
of images that show a variation in the light condition
or light exposure, as shown in Figure 4. The purpose
of this subset is to be able to evaluate the robustness
of key point extractors repeatability or feature de-
scriptors robustness against illumination changes and
noise.

Image acquisition was carried out by using a pro-
tocol where no geometric transformations were ap-
plied between any of the images that form this dataset,
ensuring that only photometric transformations occur
between them. This implies that the homography ma-



Figure 6: Some images of focus varying dataset compound of 25 different images.

trix that relates them geometrically correspond to the
identity matrix. To ensure that no geometric transfor-
mations were applied during dataset acquisition, both
the illumination equipment and the camera were op-
erated remotely. As mentioned in section 4, we used
flashes to generate the illumination of the scene. The
use of the flashes allow us to vary the amount of light
without changing any camera acquisition parameters,
i.e. setting fixed the aperture value, the exposure time,
and ISO speed. In this way, neither the depth of field
(DOF) is varied along the images that constitute the
dataset, nor additional noise is added due to an in-
crease of either ISO speed, or due to sensor heat be-
cause of longer exposure times. Every image in this
dataset is consecutively reduced approximately an 1/3
of a f-stop, starting with a correct exposure in the first
image. This dataset is composed of 15 images re-
sulting in a difference of 4.5 f-stops between the first
and last images. Figure 7 shows two images of the

Figure 7: Images from the exposure varying dataset taken
with a mobile device.

same scene taken with the iPad in controlled illumi-
nation conditions. Left image was captured with a
correct value of exposure, while the right image was
captured with approximately 2’5 f-stops less of expo-
sure. As mentioned in section 4, in the mobile device
setup we used a continuous light source where light
intensity can be set manually. It is worth mention-
ing that both the focus point and exposure metering
point were fixed along the capturing of all images in
the dataset.

In opposite to the DSLR setup where exposure
values, i.e. ISO speed, aperture, and exposure time,
can be set manually, in a mobile device, such as the
iPad, those values are set automatically during image
acquisition. In this way, we used an application that
allowed us to focus and measure exposure always in
the same gray neutral part of the scene along the cap-

tures. This ensures that the exposure readings are con-
sistent along image acquisitions, given different light
conditions. As expected, in both cases, as the amount
of light decreases, i.e. the signal-to-noise ratio (SNR)
decreases, the amount of digital noise increases. This
is clearly more noticeable in the case of the mobile
device, due to the smaller size of its image sensor,
and therefore a more limited dynamic range compared
with the DSLR camera.

5 TRANSFORMED IMAGE
DATASET GENERATOR

In addition to the proposed set of images, we imple-
mented a set of C++ functions and Python Scripts that
allow the generation of several testing images by ap-
plying either random or systematic geometric trans-
formations, as well as photometric transformations.
Through Python scripts the user can define the source
image, the type of transformation, the number of im-
ages to be generated, and the minimum and maximum
values for the given transformation. In this way, it is
easy to generate several datasets, with different types
of images, and several types of transformations and
transformation ranges. Next, we describe the type of
transformations implemented in the image generator.

5.1 Geometric transformations

The proposed testing image generator allows to gener-
ate transformed views of a source image by applying
similarity transformations such as isotropic scaling,
or in-plane rotation, as shown in Figure 8, as well as
other affine transformations in one or several direc-
tions. The generation of this type of images is use-
ful in order to evaluate the behaviour of different ap-
proaches against different values of a given transfor-
mation, as described in section 3.

5.2 Photometric Transformation

In our transformed image generator, we also incorpo-
rated a functionality that allows to generate images



Figure 8: Scale transformed views of the first image of
the Graffiti dataset, proposed in (Mikolajczyk and Schmid,
2002)

contaminated with noise. Digital image noise can
be split mainly in two different categories, luminance
noise and chrominance noise, depending if the errors
are produced in luma (intensity) or in chroma (color).
There are some others types of noise such as horizon-
tal or vertical banding (patterned noise), but it does
not degrade images as luminance or chrominance
noise do. Our image generator is able to create images
contaminated with luminance or chrominance noise,
or with both types simultaneously. Figure 9 shows,

Figure 9: Types of noise

from left to right, an image patch filled with 50%
gray value, contaminated with luminance noise only,
with chrominance noise only and with both types of
noise simultaneously. Depending on the nature of the
camera and acquisition, i.e. exposure and ISO speed,
these errors may vary. For example, we can check in
the images of light varying dataset how noise levels
increase as light decreases (SNR decreases), which is
more noticeable in the case of the iPad.

6 CONCLUSIONS

We have presented a new set of images, as well as
an image generator and an evaluation framework that
help in the evaluation and development of new ap-
proaches related with image key point extraction, de-
scription and matching for both standard and mobile
devices. Our proposed framework can be seen as
an extension or an evolution of the extensively used
evaluation framework of (Mikolajczyk and Schmid,
2002). Moreover, the proposed image dataset has a
higher number of images, with higher resolution and
with better controlled geometric and photometric con-

ditions. The evaluation framework is entirely written
in C++, and therefore easily integrable in many re-
search environments related with the testing or de-
velopment of key point extraction, description and
matching mechanisms.

We are currently using and extending our pro-
posed framework for the evaluation of state-of-the-art
approaches for key point feature descriptors, such as
BRIEF, ORB, RIFF, sGLOH, FREAK, NERIFT, or
BRISK, among others, with real acquired images, as
well as with synthetically generated ones.
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