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Abstract

Volume rendering is a visualization technique focused in volumetric datasets, which requires a great amount of computational
power and memory resources. This situation is even more severe when HTML5 and WebGL implementations are used in ubig-
uitous platforms to render the virtual scene. This paper presents a WebGL based volume rendering algorithm to support 3D
geometries (provided as a set of 3D triangles) inside the volumetric datasets. Implementation details to achieve interactive rates

along the volume rendering methods are also discussed.

Categories and Subject Descriptors (according to ACM CCS): 1.3.0 [Computer Graphics]: General—I.3.3 [Computer Graphics]:

Picture/Image Generation—Display algorithms

1. Introduction

Volumetric datasets are widely used in the medical field. A large
variety of medical procedures count on these datasets to provide
accurate and useful evaluation of the patients’ health. Volumetric
datasets are acquired via CT or MRI scans, producing a set of 2D
slices. Volume rendering techniques were a milestone in the med-
ical field, as these methods were used to obtain 3D visualizations
from the set of 2D slices.

The integration of 3D polygonal elements in volume rendering
is a key functionality, specially in the medical field, but also im-
portant in others fields like the simulation of engineering processes
(thermal combustions). This paper presents an interactive volume
rendering algorithm to support 3D geometries (provided as a set of
3D triangles) inside the volume within the constraints of the We-
bGL APIL

The Web as a 3D interactive visualization platform presents re-
strictions as it tries to cover a wide range of devices maintaining
cross-platform support from mobile devices to desktop PCs. For
volume rendering, challenges such as, the lack of 3D and depth
textures need to be addressed.

The paper is organized as follows, first we present the related
work at Section 2. Section 3 describes the modifications needed
to allow the coexistence of 3D geometries and volumetric data. Fi-
nally, in Section 4 some conclusions and future work are discussed.
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2. Related Work

Volume rendering visualizations are being used in various fields to
visualize volumetric data. As a consequence, several volume ren-
dering algorithms have been researched over the years. Hadwiger et
al. [HKRs*06] made a survey of real-time volume rendering graph-
ics.

This paper is centered in the ray-casting Direct Volume Render-
ing (DVR) approach. DVR approaches create a rendering directly
fetching the volume data. Ray-casting was first introduced using the
CPU by Kajiya and Von Herzen [KVH84]. Nowadays, due to the
parallel nature of this technique, it has been adapted to work with
the GPU. Kriiger and Westermann [KWO03] presented a multi-pass
hardware accelerated approach.

In despite of the efforts made to improve the visualization algo-
rithms and techniques, the combination of highly specialized soft-
ware and hardware products has made difficult to share volume vi-
sualizations across different devices. In contrast, the Web postulates
as an ubiquitous deployment platform for volumetric data thanks to
GPU accelerated graphics available through the WebGL API.

Based on the Web a few have contributed to the WebGL based
ray-casting. The first multi-pass method was introduced by Con-
gote et al. [CSK*11]. Later Mobeen et al. [MF12] presented a sin-
gle ray-casting approach. Noguera and Jiménez [NJ12] have also
addressed the limitations of volume data size of these approaches.
The presented work extends these efforts exploring the possibili-
ties of the coexistence of 3D triangular meshes along volume data
within the constraints of the Web platform.
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2.1. Volume rendering ray-casting algorithm

The ray-casting technique consists in the generation of rays from
the camera position which traverse the volumetric dataset mim-
icking the light absorption and emission physical model. For each
pixel of the image, a ray is casted into the scene, which contains a
geometric 3D cube. This cube acts as the container of the volumet-
ric 3D dataset. Each ray traverses the cube, sampling the volume
data at equi-distant intervals. At each sampling interval, a scalar
value is obtained. This operation is usually done by re-sampling
the volume data with trilinear interpolation. This calculated value
is accumulated along the ray using alpha blending in front-to-back
or back-to-front order.

The obtained scalar value at each sample interval can be mapped
to a given color and opacity by providing a look up table (transfer
function) or alternative methods to alter the accumulation compo-
sition and in this way, give color or enhance characteristics in the
volume data. When the ray finishes the bounding box traversal, the
accumulated color and opacity is set to the pixel from which the
ray has been originally generated from.

The pseudo-code shown in Listing 1 summarizes the ray-casting
algorithm that can be found in the literature.

Listing 1: Ray-casting pseudo-algorithm

For each pixel in the screen
Initialize number of steps S
Compute the ray_pos, ray_direction
AND maximun distance D
Compute interval step s
For i=0;i<S;i=i+1
Interpolate sample at current ray_pos
Compute color with transfer function
Accumulate color
Accumulate opacity o
If o >= 1.0 OR ray_pos > bounding box
break ;
Increment ray_pos with s
End For
End For

2.2. WebGL volume rendering

The WebGL multi-pass approach was presented by Congote et
al. [CSK*11]. In this method, the ray-casting is performed in two
rendering passes.

First pass (Back cube coordinates): The back faces of the cube
are rendered in a separate Frame Buffer Object (FBO). In this pass,
the 3D texture coordinates are assigned as a color on each vertex
of the cube. In the rasterization process, the interpolated per-vertex
colors represent the volume data 3D texture coordinates.

Second pass (Ray direction and traversal): The front faces of
the volume bounding box are rendered in the screen buffer with
the same vertex shader as in the first render pass. In the fragment
shader, using the interpolated per-vertex color of the front faces and
the back faces coordinates obtained in the previous pass, the ray

direction and length is computed. Finally, the ray traversal samples
the volume data with the method presented in Section 2.3 and using
the ray-casting algorithm described in Listing 1.

The pipeline of this approach is depicted in Figure 1. The sec-
ond pass calculates the ray direction and actually performs the ray
traversal.

(a) Ray exit points
Figure 1: WebGL ray-casting multi-pass approach. a) First pass,
ray termination coordinates encoded as RGB. b) Second pass, ray
direction (back-front) as RGB.

(b) Ray direction

2.3. Image texture atlas

The biggest caveat of WebGL in relation to desktop volume ren-
dering techniques is the lack of support for 3D textures. Congote
et al. [CSK*11] proposed a workaround to allow sampling the 3D
volume data using a single 2D texture. Volume data is usually com-
posed by a set of 2D slices (2D images) stacked in the Z axis. The
slices can be arranged as a matrix configuration in the same 2D
plane or atlas.
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Figure 2: Example of an image texture atlas of the aorta dataset.

Figure 2 shows an example of a volumetric dataset represented
as a 2D texture atlas. The stack of slices have been converted into an
atlas representation which allows to store the volume data as a 2D
texture. The ray-casting fragment shader will use this 2D texture to
sample the volumetric dataset. Using a transfer function, the scalar
values obtained from the volume data are mapped with colors, an
example with the aorta dataset will be shown in Figure 3e
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3. Intersection with 3D geometry

Volume rendering can be considered as a specific rendering method
that focuses mainly in volumetric data. But in some cases, it is
of interest to render volumetric and geometrical data together in
the same scene. For example, in medicine flow streamlines are
typically visualized combined with MRI scan data [SAG™14].
Also, medical surgical training simulations require the interac-
tion between 3D modeled objects and real volumetric data in
order to simulate the operations with the use of haptic devices
[VFW12, XSH*16]. This section describes additional procedures
that must be performed in the ray-casting algorithm to support the
integration of 3D geometry and 3D volumetric datasets.

Volumetric data can be considered as semi-transparent objects,
and therefore, there are two cases to take into account when render-
ing both 3D geometry and volume data together. In the first case,
the rendering order and the blending process must deal with 3D
geometries in front of the volume (occlusion of the volume) and
3D geometries behind the volume (occlusion of the 3D object). In
the second case, changes in the ray-casting algorithm have to be
implemented to support the rendering of 3D objects inside or in-
tersecting the volume. The following subsections present solutions
to overcome these two cases. The blending process is explained in
Section 3.2 and the intersection case will be presented in Section
3.3.

3.1. Multi-pass rendering

To support the rendering of 3D polygonal meshes and volumet-
ric datasets, the presented ray-casting method at Section 2.1 must
be modified with additional rendering passes. These passes are re-
quired to gather additional information needed during the ray cast-
ing traversal in the last pass of the volume ray-casting.

For the rendering of the complete scene, when mixing opaque
and transparent objects, the order of which objects are rendered
is important. Similarly to the traditional Computer Graphics tech-
niques that render transparent and opaque polygonal meshes, to
render volumes and 3D opaque meshes they must be sorted in z-
depth order and rendered from back to front.

These are the five passes that are necessary to support the ren-
dering of 3D meshes and volume data (see Figure 3):

First pass (Depth pass): In the first pass, the depth of all the 3D
meshes in the scene are rendered into a Frame Buffer Object (FBO).
A simple shader is executed per 3D object in which the fragment
shader outputs the current depth encoded in the color channels as
RGBA.

Second pass (Color of surface objects): In the second pass, all
the 3D meshes are rendered into a separate FBO to store their color
information.

Third pass (Back cube depth): With the same shader used in the
first pass, the depth of the back side of the volume bounding box is
rendered into a FBO encoded in the color channels as RGBA.

Fourth pass (Back coordinates of the cube): In this pass, the
back faces of the volume bounding box are rendered into a separate
FBO. This is same as the first pass in Section 2.2. As result, the

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

the output color components are the exit point of the rays for the
ray-casting algorithm.

Fifth pass (Ray traversal and 3D surfaces): In this pass, 3D ob-
jects are rendered in the screen along volume objects computing
the ray-casting traversal. Objects must be rendered sorted in Z in
back-to-front order. In the fragment shader rays are casted towards
the volume accumulating color and opacity to finally be rendered in
the screen buffer. In this pass, all the outputs of the previous passes
are 2D texture inputs for the ray-casting fragment shader. The ad-
ditional computation applied in the ray-casting shader is explained

in Section 3.3.

(a) First pass (b) Second pass
(c) Third pass (d) Fourth pass

¥,

(e) Fifth pass
Figure 3: Multi-pass ray-casting pipeline to render volume and 3D
geometries.

As an immediate conclusion of the presented passes, the objects
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must be rendered in certain order to correctly obtain the final com-
position. Additionally, a downside of this multi-pass approach is
the number of the FBO required.

3.2. Blending

As stated in the multi-pass rendering approach presented in Sec-
tion 2.2, the rendering order of the objects in the scene must be
specific. Volume objects are semi-transparent and thus, if an opaque
3D mesh is behind the volume object, it will be partially occluded.
As a consequence, the 3D object partially contributes to the final
rendering output. This step is traditionally known as alpha blend-
ing.

When the ray-casting shaders are executed in the final rendering
pass, the color and alpha output of the computed pixels are being
rendered in the screen. For our approach, we have used a back-to-
front blending composition.

(a) Blend off (b) Blend on
Figure 4: Alpha blending of volumetric objects and 3D geometries.

a) Rendering the volume with blending disabled. b) Front-to-back
alpha blending enabled.

Figure 4 shows that the alpha blending is necessary to render
correctly any object behind the volume object. The following code
shows how to enable blending and to perform a back-to-front com-
position using WebGL directives.

gl.enable (gl.BLEND) ;
gl.blendFunc (gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);

The back-to-front blending is performed only in the fifth pass.
For simplicity we have only considered opaque 3D objects in our
experiments. Therefore, we are assuming that there are not trans-
parent 3D polygonal objects in the scene. But minor adjustments
of the presented methodology can be implemented to support 3D
transparent objects.

3.3. Ray-casting with 3D geometry

The ray-casting fragment shader must be modified to support
blending of the 3D meshes and the volume. In this section, these
necessary additions are presented as GLSL code samples.

The first problem we have to overcome is the use of the depth
information coming from the 3D objects at the ray-casting final
pass. During the ray-casting traversal rays advance inside the vol-
ume bounding box fetching data from the volume texture. During

this traversal, it is required to determine at each step if there is a 3D
object or not.

To achieve this goal, we need to access the depth data produced
by passes 1 and 3 (see Section 3.1) at the fifth pass of the ray-
casting. The Frame Buffer Objects (FBO) produced in those passes
are created as RGBA textures, since WebGL has no support for
Float textures. An extension has been provided to WebGL 1.0 in
order to support depth textures, but only implemented by some
browsers. As a fallback solution to all WebGL compatible devices
packing and unpacking functions can be used. The depth informa-
tion is packed as RGBA in the passes 1 and 3 and this RGBA in-
formation is then unpacked to a float 24-bit value in the fifth pass
using the following GLSL code:

function packFloat (in float wvalue) {

const vecd bitSh = vecd (256.0%x256.0%256.0,
256.0%x256.0, 256.0, 1.0);

const vecd bitMsk = vecd4 (0.0, 1.0/256.0,
1.0/256.0, 1.0/256.0);

vecd res = fract(value * bitSh);

res —-= res.xxyz x bitMsk;

return res

—

function unpackFloat (in vec4 value) {
const vec4 bitSh = vecd4 (1.0/(256.0%256.0%256.0),
1.0/(256.0%256.0),
1.0/256.0, 1.0);
return (dot (value, bitSh));

—

At the beginning, parameters are initialized per pixel fragment
to initialize the ray-casting: ray_origin, ray_direction, ray_step...
Additionally, depth data from previous passes is also fetched to ini-
tialize the ray depth step in the same space as the scene objects. The
following GLSL code stores the depth information in independent
variables that will be used in the final comparison:

float backDepth=1.0 -

unpackFloat (texture2D (uBackDepth, texD));
float frontDepth=1.0-gl_FragCoord.z*gl_FragCoord.w;
float surfDepth=1.0 -

unpackFloat (texture2D (uDepthSurface, texD));
float depthStep=(backDepth-frontDepth) /n_steps;

During the ray casting traversal the decoded depth value is com-
pared with the depth of the ray, while the ray step and the depth are
iteratively incremented.

The depth test compares the depth of the 3D object, including its
thickness, and the z position of the ray-casting (ray_depth). If the
3D object is hit, the accumulated value is updated with the color
of the object and the corresponding z position is updated. The fol-
lowing GLSL code shows that procedure and that the ray-casting
loop is stopped with the break instruction since an opaque object
has been hit:

if ((ray_depth-surfDepth) > - (depthStep))
{

accum.rgb = (accum.a * accum.rgb) +
((1.0 - accum.a) * objectColor.rgb);
accum.a = accum.a * accum.a + (l1.0-accum.a);

final _depth = surfDepth;

(© 2016 The Author(s)
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break;

}
The ray-casting algorithm can finish in different ways:

e The ray traverses the volume completely
o The ray fills the alpha value during the ray traversal
e The ray hits an opaque object

The first case uses the traditional ray-casting algorithm, but the
possibility of having a 3D objects behind the volume has to be
taken into account. The second case falls back to the traditional ray-
casting algorithm and the accumulated color and depth is returned
as the color of pixel in the final rendered image. The third case is
when the ray hits a 3D object inside the volume. The scenarios are
depicted in the following subsections. The first one addresses the
case of a ray traversing the volume completely. The second sub-
section addresses the early termination techniques used to detect
if a ray has hit a 3D object or the accumulated opacity value has
reached an opaque value and consequently, abort the ray-casting.

3.3.1. Complete ray traversal, accumulated alpha less than 1

When a ray traverses the volume dataset, a color is returned with
an alpha value less that 1.0, which means, it is semi-transparent.
Therefore, the final color in that pixel has to take into account the
possibility of any 3D objects that might be behind the volume. This
problem is solved by WebGL blending directives. As the 3D ob-
jects have been rendered before the volume, the color buffer has al-
ready the 3D object color information. Rendering the volume into
the color buffer activates directly the WebGL blending functions
and the expected behaviour is achieved.

3.3.2. Early ray termination, accumulated alpha equal 1

A common ray-casting acceleration technique is known as early
ray termination (see Kriiger et al. [KWO03]). In this technique the
ray traversal is interrupted when the accumulated opacity reaches
an opaque value (accumulated alpha equal 1.0) before the ray gets
out of the volume bounding box boundaries.

The early ray termination checks for the state of the accumulated
opacity inside the ray traversal loop before the computing next ray
step. The following GLSL code shows how to check if the current
ray position is inside the volume bounding box or rather the accu-
mulated alpha requires an early ray termination.

if (accum.a>=1.0 ||
any (greaterThan (rpos.xyz, vec3(1.0, 1.0, 1.0)))
break;

The break statement will abruptly interrupt the loop of ray traver-
sal. As previously stated in this section, the essence of this tech-
nique is also being applied with 3D geometries inside the volume.
When the ray intersects the 3D mesh, the accumulated color and
opacity is blended with the 3D geometry surface. As a result the
accumulated opacity reaches a totally opaque value, and thus, the
ray is terminated.

Figure 5 shows a normalized rendering output of the ray depth
using the aorta dataset. With the early ray termination the shape
of the 3D object can be shown. In the last shader pass, the early
ray termination saves unnecessary computations. This performance

(© 2016 The Author(s)
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(a) Ray depth (b) Ray and surface depth
Figure 5: Early ray termination and 3D geometries surface inter-
section with the aorta dataset. a) The depth of the volume when the
accumulated opacity reaches 1.0. b) The ray termination when a 3D
surface is intersected.

improvement is proportional to the area of the volume intersected
by the 3D object and to the closeness of the 3D object to the camera.

4. Results and discussion

The presented WebGL implementation has been tested in desktop
and mobile devices. Figure 6 shows how 3D colored and textured
boxes can be integrated with volumetric datasets.

Figure 7 shows different situations regarding the positions of the
volume and the boxes. There are pixels that corresponds to a box
placed before, behind and in the middle of the volume. All these
situations produce visual renderings that are visually correct.

The implementation of the GLSL code is targeting WebGL 1.0.
But WebGL 1.0 provides some official extensions that can be used
to produce better results and to simplify the GLSL code.

The WebGL_depth_texture extension provides the possibility of
declaring Float textures for the depth component. Using this exten-
sion, the pack and unpack functions used in the Section 3.3 can be
replaced by a direct access to the depth texture.

The WebGL EXT_frag_depth extension provides the possibility
of modifying the depth value in the fragment shader. Using this ex-
tension provides more flexibility in the depth buffer reading, testing
and writing. Ultimately, it could lead to a reduction in the number
of passes in the presented methodology.

The WebGL_draw_buffers extension provides multiple color
buffers and color render targets that could be use from the frag-
met shaders. This would allow to reduce the number of FBO passes
used to increase the overall performance.

In the future, a non-constant step size in the ray-casting algo-
rithm will be researched. The introduction of such modification
might require additional passes of the geometry and the volume
in order to calculate the optimal step size for each pixel. The im-
pact of this modification has to be studied, specially in the quality
of the results and the impact in the rendering performance.
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(a) Per vertex color

(b) Texture mapping
Figure 6: WebGL volume rendering of volumetric data and 3D ge-
ometry. a) 3D box geometries with per vertex color. b) 3D box ge-
ometries with textures.
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