
Volume visualization tools for medical
applications in ubiquitous platforms

Ander Arbelaiz1, Aitor Moreno1 Luis Kabongo1, and Alejandro Garćıa-Alonso2

1 Vicomtech-IK4,
Paseo Mikeletegi, 57, 20009 Donostia / San Sebastián, Spain,

{aarbelaiz,amoreno,lkabongo}@vicomtech.org,
2 University of the Basque Country,

Paseo Manuel de Lardizabal 1, 20018 Donostia / San Sebastián, Spain,
alex.galonso@ehu.es

Abstract. This paper presents three required functionality when vol-
ume datasets are aimed to be visualized in ubiquitous platforms: i) sup-
port of segmented volume datasets, ii) navigation inside the volume and
iii) direct visualization of DICOM datasets. DICOM is the de-facto stan-
dard in the medical imaging field. The results shows that these function-
alities can be achieved using the Volume Rendering component imple-
mented in X3DOM in several web browsers in different platforms (from
desktop computer to tablets and mobile phones).

Key words: Volume Rendering, Medical imaging, DICOM, Visualiza-
tion, X3DOM, Ubiquitous platforms

1 Introduction

In the medical field, the volumetric datasets are key in several phases of the
medical procedures. The CT or MRI scans produce a large amount of information
of a patient, normally as a set of 2D slices. These slices can be visualized and
analyzed one by one, but they provide more information if they are considered as
a whole volumetric dataset. The introduction of volume rendering techniques in
desktop platforms was a milestone in the medical field. New methodologies and
algorithms were implemented to take into account the 3D information embedded
in the set of 2D slices that compose the scans.

In the last years, the new mobile paradigm has changed the landscape of the
information sharing and the visualization schemes. The graphical power of the
mobile devices has made possible to render interactive 3D content (commercial
games, etc.). It was a matter of time to get open standards to deal with the
3D content generation and visualization without worrying about the underlying
platform (hardware or software). The X3D standard aim to accomplish this
challenge and X3DOM provides a WebGL implementation of the standard.

The volume rendering nodes in X3D are specified, but they do not materialize
the precise functionality that the users require to interact with the volumetric
datasets.



2 Ander Arbelaiz et al.

This work presents three functionalities that have been detected as missing
in the web-based volume rendering toolkits, including X3DOM. A solution has
been devised for all the three functionalities and the results show that the new
functionality works in different platforms.

The next section provides a summary of the bibliography and the related
work. Sect. 3 presents the three functionalities to include in the volumetric vi-
sualization toolkits and how we have provided a solution for them. This paper
concludes with the conclusions and future work.

2 Related work

This section is divided in two parts: the first one describes previous work and the
second one describes the volume ray-casting algorithm implemented in WebGL.

2.1 Previous work

Volumetric visualization has been extensively studied over the years. Nowadays
it is currently used on a variety of fields, but especially in medicine. Different vol-
ume visualization techniques can be found in the literature; our work focuses in
ray-casting. Originally introduced by Kajiya and Herzen [5], ray-casting method
was later translated to the GPU by Kruger and Westermann [6].

The growth of mobile devices and their rapid adoption on every days work
has made them a target platform for computationally expensive applications like
medical visualization. Rodŕıguez et al. [8] analyzed different volume rendering
algorithms on mobile devices. More recently, Schiewe et al. [10] reviewed the
status of volume rendering with the latest graphics APIs available on iOS devices.

WebGL-based rendering positions as the only choice to achieve a ubiquitous
volumetric visualization. The first WebGL-based ray-casting method was intro-
duced by Congote et al. [2]. In this direction, improvements have been published
by Mobeen et al. [7]. Also, the volume size constraints of this approach have been
addressed by Noguera and Jiménez [8]. The web browser is a common denomina-
tor in current devices; this has promoted initiatives to create web based medical
oriented visualization tools. Between the current available scientific frameworks
we should mention XTK [4], VJS [11], and X3DOM [1].

2.2 WebGL volume ray-casting

Our work is integrated in the X3DOM framework under the volume rendering
component. Volumetric rendering is performed with a single-pass ray-casting
algorithm. In the scene a cube is rendered and it will be used to place the actual
volume data during the ray-casting. Using the programmable pipeline provided
by the WebGL API, a single pair of vertices and fragment shaders is used. In
the vertex shader, each vertex position of the cube is multiplied by the Volume
ModelView matrix and the Projection matrix, transforming the vertices into
clip space.



Volume visualization tools for medical applications. 3

In the fragment shader, the ray traversal is actually computed. When the tri-
angles of the cube are rasterized into fragments, the interpolated vertices of the
unitary cube represent 3D texture coordinates. From the inverse ModelView ma-
trix the camera position can be obtained. After, by subtracting the interpolated
vertex position with the camera position the ray direction can be determined.
Taking both the interpolated position as the ray origin and the ray direction,
using a fixed length loop statement in the fragment shader the ray traversal is
created. For an in depth description of the single-pass approach, we refer the
reader to Mobeen et al. [7].

The ray traversal is discretized into a series of steps. At each step the position
of the ray is used as a 3D texture coordinates to fetch the volume data. However,
WebGL does not support 3D textures, as first stated by Congote et al. [2] this
can be overcome using a texture atlas (ImageTextureAtlas): the cross sectional
slices that compose the volume are tiled into a matrix configuration to compose
a single 2D texture.

3 Medical Visualization

Volumetric data is often used in the medical field in a large variety of situations:
from research and diagnosis to educational purposes. In terms of visualization
interactivity and usability, mobile platforms should provide the same tools as
their desktop counterpart.

In pursuit of a ubiquitous medical volumetric visualization, we have detected
three features that we consider that a ubiquitous volume visualization toolkit
must provide: i) the visualization of segmented data, ii) camera navigation inside
the 3D volume and iii) the support of DICOM file format, a widely used medical
data exchange format.

3.1 Segemented medical data

Volume visualization must be extended to provide the tools that the medical use
cases require. Trained specialists in medical imaging segment regions of interest
from the cross-sectional slices that compose a volume. The segmentation of the
volume is important to focus the attention or to limit further work at the region
of interest. Thus, any medical visualization tool must be capable of helping the
user to discern the region of interest from the whole volume.

We have extended the initial ray-casting algorithm presented at Sect. 2.2 to
support segmented visualization. In the ray-casting loop the ray traverses the
volume accumulating color and opacity. The segmented data acts as an identifier
on each voxel to allow the selection of an alternative accumulation algorithm at
the region of interest. Using a distinctive color and opacity in sections where the
ray traverses, allows standing out a region by visually enhancing the segmented
area from the whole volume. The algorithm at Fig. 1 describes how the segmented
data must be implemented inside the ray-casting loop.



4 Ander Arbelaiz et al.

Fig. 1. Flowchart describing the segmentation algorithm in the ray traversal

As Fig. 1 shows, the segment data fetching is actually translated into a switch
or selection statement that is performed in the ray-casting loop at a per step
basis. From a performance point of view, this must be carefully considered as
branching is not well supported in mobile devices. The type of variation in the
accumulation process (see Fig. 1) will change depending of the use case, e.g.,
mapping colors with a transfer function (TF), modifying the opacity given the
camera view and discarding the data. Fig. 2 shows two renders of datasets with
segmented regions. Each one has been generated with different accumulation
processes to make them distinguishable from the volume.

Fig. 2. Segmented data renderings of the aorta (512×512×97) and the Head MRI [12]
(256 × 256 × 124) datasets. On the left, the edges of the segmented bones have been
enhanced with color. On the right, the segmented ventricles had been colored with blue
tones

We have seen that it is advisable to specify a user-defined argument to ex-
plicitly know the maximum number of segments beforehand. The maximum
number of segments limits the branching statements and they are dynamically
added at the fragment shader creation time. Otherwise, the number of branch-
ing statements will be unbounded and a big amount of unnecessary comparison
operations will be performed with a potential impact on the GPU performance.



Volume visualization tools for medical applications. 5

In our implementation, the segmented data is tiled into a matrix configura-
tion with the same procedure that must be performed with the volume data (see
Sect. 2.2). To gain performance the segmented data could be stored in the alpha
channel of the original volume data texture atlas, however, it is better and easier
to create a separate texture. In first place, communication between server and
client should be considered. The segmentation can be processed automatically
or manually in an off-line tool and be loaded when required.

In second place, the texture atlas resolution should be considered. Due to
memory restrictions in GPU mobile devices compared to desktop computers,
the segmented texture atlas can be stored with a smaller texture size than the
original texture atlas, and the same position coordinates would be valid to fetch
the data from both textures. This technique will imply a precision loss of the
segmented region.

3.2 Inside exploration of volume data

Another visualization requirement in the medical environment is related to the
interaction and immersive experience that volumetric data can provide. This can
be conceptualized as the ability to explore the data from within the volume. An
inside exploration allows the user to easily discern the internal composition of the
volume rather than looking at the cross-sectional 2D images. In our implemen-
tation we have allowed the exploration of the volume by dynamically changing
the initial position of the ray origin. Fig. 3 describes the algorithm used. In this
case, the cube is of unitary size.

Fig. 3. Flowchart describing the ray origin computation in the single-pass ray-casting
algorithm

First the camera position is obtained from the inverse ModelView matrix.
Then using the maximum and minimum boundaries of the cube, it can be deter-
mined whether or not the camera is inside the volume. If the camera is outside
the cube, the ray origin is assigned as the interpolated vertex position from the
output of the vertex shader (varying vertex position), if not, the ray origin
is the camera position. Fig. 4 shows an external and internal rendering of the
Head MRI dataset [12]. Without changing the ray origin, the camera face of the
cube will be clipped, making not possible an examination of the inside. Thus,



6 Ander Arbelaiz et al.

Fig. 4. Rendering of the Head MRI dataset (256 × 256 × 124) [12] enhancing a seg-
mented area. On the left, the camera is outside the volume. On the right, the camera
is inside the volume

back face culling must be disabled when internal exploration is required. When
the camera is moved into the cube, the ray-casting direction for each ray is ob-
tained by subtracting the interpolated back face vertex position with the camera
position.

3.3 DICOM visualization

Medical imaging devices do not only produce the actual 2D set of slices. They
are linked with a large amount of metadata with related information about the
patient and other medical procedures. DICOM is the medical image standard
to store and transfer all this information from and between imaging devices
and medical image storage repositories. The wide utilization of DICOM by all
manufacturers had a major impact on usability of the file format. Resulting
sometimes in a variable set of tags to be read, interpreted and combined in
order to achieve coherent restitution of the images for the final user.

Cornerstone JavaScript library [3] provides a set of functions to read and
interact with the 2D set of slices stored in DICOM files and it relies on dicom-
Parser to load DICOM tags, including pixel data.

The combination of dicomParser with the volume rendering nodes defined
in a X3D scene provides a general and ubiquitous solution to the problem: the
slices pixel data is extracted from the DICOM file and then, a texture atlas is
created and linked to the required texture field of the VolumeData X3D node.

We have devised two ways to accomplish the information transfer from the
DICOM file to the X3DOM framework. The first one is to use a <canvas> node
defined inside the ImageTextureAtlas node and then, using JavaScript, fill the
canvas with a texture atlas.

<ImageTextureAtlas id="atlas">

<canvas id=voxelCanvas></canvas>

</ImageTextureAtlas>



Volume visualization tools for medical applications. 7

The second integration method is to use the same auxiliary <canvas> node
but defined out of the ImageTextureAtlas node. The VolumeData node uses an
empty ImageTextureAtlas (no real URL is given). The JavaScript loader draws
the atlas texture in this canvas as before, and then, the correct URL is provided
as a DataURL, which means that the whole volumetric information is encoded
and passed in the URL.

<ImageTextureAtlas id="atlas" url="data:"></ImageTextureAtlas>

document.getElementById("atlas").setAttribute(

’url’,

document.getElementById("voxelCanvas").toDataURL()

);

4 Conclusions

This work has introduced three functionalities required by the users in the visu-
alization and inspection of volumetric datasets, especially in the medical field.
The utilization of segmented datasets has been made possible via the Segmented-
VolumeData node of the X3D in combination with the X3DOM framework. The
ability to visualize the volumetric information from inside the dataset enables
novel capabilities like vessel navigation. Finally, DICOM files have been read
and parsed in the web and different methods to pass the volumetric information
to the interactive volume rendering X3D nodes have been explored. All these
functionalities are currently available in the developer version of the X3DOM
framework and they will be part of the next stable release.

Fig. 5. Ubiquitous volume rendering with WebGL in multiple platforms using seg-
mented medical datasets

The Fig. 5 shows how the presented functionality in this work can be used
in the web browser in desktop and mobile platforms. Next steps will be oriented
toward the further integration of DICOM in the web environment, as right now



8 Ander Arbelaiz et al.

only the scanned images are used in the visualization. More fields and metadata
could be used to generate better immersive experiences in the volumetric data.

The utilization of modern VR devices like Oculus Rift, HTC Vive or Mi-
crosoft Hololens will increase the immersiveness in the information, but novel
user interfaces should be provided. WebVR [13] proposes a preliminary solution
to integrate VR devices into the Web and currently, there are sample demos of
X3D scenes rendered in such devices. A responsive web application could pro-
vide a specific immersive visualization of volumetric datasets for VR devices or
a mobile oriented visualization if a smartphone is detected.

References

1. Behr, J., Eschler, P., Jung, Y., & Zöllner, M. (2009, June).: X3DOM: a DOM-
based HTML5/X3D integration model. In: Proceedings of the 14th International
Conference on 3D Web Technology (pp. 127-135). ACM.

2. Congote J, Segura A, Kabongo L, Moreno A, Posada J, Ruiz O (2011).: Interactive
Visualization of Volumetric Data with WebGL in Real-time. In: Proceedings of
the 16th International Con- ference on 3D Web Technology, ACM, New York, NY,
USA, Web3D 11, pp 137146

3. Cornestone JavaScript library to display interactive medical images including but
not limited to DICOM, https://github.com/chafey/cornerstone

4. Hähn D, Rannou N, Ahtam B, Grant PE, Pienaar R.: Neuroimaging in the Browser
using the X Toolkit. Front. Neuroinform. Conference Abstract: 5th INCF Congress
of Neuroinformatics., 2014

5. James T. Kajiya and Brian P Von Herzen. 1984.: Ray tracing volume densities. In:
Proceedings of the 11th annual conference on Computer graphics and interactive
techniques (SIGGRAPH ’84), Hank Christiansen (Ed.). ACM, New York, NY,
USA, 165-174.

6. Kruger, J.; Westermann, R.: Acceleration techniques for GPU-based volume ren-
dering. In: Visualization, 2003. VIS 2003. IEEE , vol., no., pp.287-292, 24-24 Oct.
2003

7. Mobeen M, Feng L (2012).: High-Performance Volume Rendering on the Ubiqui-
tous WebGL Platform. In: High Performance Computing and Com- munication
2012 IEEE 9th International Conference on Embedded Soft- ware and Systems
(HPCC-ICESS), 2012 IEEE 14th International Confer- ence on, pp 381388

8. Noguera, J., & Jiménez, J. (2012, June).: Visualization of very large 3D volumes on
mobile devices and WebGL. In: 20th WSCG international conference on computer
graphics, visualization and computer vision. WSCG.

9. Rodŕıguez M. B., Alcocer P. P. V.: Practical Volume Rendering in Mobile Devices.
ISVC 7431, Chapter 67 (2012), 708718.

10. Schiewe, A and Anstoots, M and Krüger, J.: State of the Art in Mobile Volume
Rendering on iOS Devices. In: Eurographics Conference on Visualization (EuroVis)
- Short Papers. E. Bertini and J. Kennedy and E. Puppo (Ed.). The Eurographics
Association. (2015)

11. VJS Medical Imaging Sugar for ThreeJS, https://github.com/FNNDSC/vjs
12. Volume Data obtained from, http://www.volvis.org
13. WebVR Bringing virtual reality to the web, http://webvr.info/


