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Abstract Sports are a key part of cultural identity, and it is necessary to 

preserve them as important intangible Cultural Heritage, especially the human 

motion techniques specific to individual sports. In this paper we present a 

method for extracting 3D athlete motion from video broadcast sources, 

providing an important tool for preserving the heritage represented by these 

movements. Broadcast videos include camera motion, multiple player 

interaction, occlusions and noise, presenting significant challenges to solve the 

reconstruction. The approach requires initial definition of some key-frames and 

setting of 2D key-points in those frames manually. Thereafter an automatic   

process estimates the poses and positions of the players in the key-frames, and 

in the frames between key-frames, taking into account collisions with the 

environment and human kinematic constraints. Initial results are extremely 

promising and this data could be used to analyze the sport's evolution over time, 

or even to generate animations for interactive applications. 

Keywords: Motion capture, human body posing, intangible cultural heritage, 

video legacy. 

1   Introduction 

While the specific role of sport in society has been debated for many decades, it is 

widely accepted that it is an important part of human and social development [1]. It 

can contribute to social cohesion, tolerance and integration and is an effective channel 

for physical and socio-economic development [2]. As a universal language, sport can 

be a powerful medium for social and economic change: it can be utilized to bridge 

cultural gaps; solve conflicts and educate people in ways that very few other activities 

can. 

The ability of sport to shape society is still evident today and in our recent history 

where it has been used openly and actively by many nations to preserve unique social 



and cultural identities. Traditional Sports and Games (TSG) represent social values 

that have taken many years to reach equilibrium in their environment. The language, 

the land and local customs have modelled them into the forms that we know today. 

Such TSG can form the backbone of a community and many elements of traditional 

culture (e.g. language, cuisine, dress, music, dance, the arts), so they have to be 

promoted to foster community spirit, bring people together and generate a sense of 

pride in a society’s cultural roots. 

Since the beginning of the modern industrial society, many TSG have been 

transformed into very codified and regulated sports, often becoming professional 

spectacles, or have been lost following the domination of these codified sports (e.g. 

soccer, tennis, volleyball). Thousands of TSG worldwide were taken out of their place 

or lost, along with the rich Heritage they represent. Therefore, initiatives are required 

to both engage individuals in their TSG, thereby increasing levels of participation, 

and record accurately the techniques used in the recent past to help preserving 

knowledge of these sports and games. 

Ideally, sports actions should be captured in 3D in order to best represent their 

complexity, although this usually involves specialised cameras and environmental set 

ups (see Section 3). However, significant amounts of 2D digital content related to 

sports are available, mainly from broadcast sources. These video legacy archives store 

many examples of the skills of past and current games. This paper describes an 

approach for 3D human body pose reconstruction from TSG video legacy recorded 

with non-calibrated monocular cameras in order to recover the main skills of 

representative TSG players (National Heroes). This reconstruction generates an 

animated 3D skeleton, representing the movements of the player and poses in a 3D 

environment. Once the skills of the players are extracted to an independent 3D 

environment, such 3D data can be used to generate digital virtual content to be shown 

in virtual museums, virtual immersive systems or videogames. This method is not 

limited to video sequences but it is also applicable to single images. 

The paper is organized as follows. Section 2 gives an introduction to the related 

work in this matter. Section 3 explains the method proposed to extract the skills of a 

player from a video sequence. In section 4, the algorithm used to extract the 3D 

human pose from each image is explained. Section 5 shows the experimental results 

for monocular TV sports footage. Finally, in section 6 we discuss the obtained results 

and the future work. 

2   Related Work 

Motion capture techniques available in the literature can be classified in two different 

groups: marker based motion capture and markerless motion capture. The former 

approaches are based on the tracking of certain markers located over the tracked 

subject. The tracking data is captured using various infrared cameras, located around 

the tracked subject. In most of the cases, the used cameras have to be calibrated and 

synchronized. Although such approaches are very accurate, they are not applicable for 

broadcast videos. In this scenario, the tracked subject does not have any kind of 

marker attached during the recording of the video. 



Secondly, most of the markerless approaches are based on synchronized, multi-

view image sources. For instance, [1] describes a multi-view approach for markerless 

full body tracking. Even though the accuracy and good results of this solution, it also 

requires good quality images and complex initialization steps. 

In the case of broadcast video analysis, the input data is always a monocular video 

and the recorded players are wearing neither specific markers nor clothes with special 

markers for motion analysis. The extraction of full body movements from a 

monocular video is a specially challenging issue or/and task [4], [5] and [6], as depth 

data cannot be directly measured from a monocular image. Also, the proportions of 

the human body vary largely from one individual to another, so those proportions 

could not be measured accurately. Some approaches like [7] rely on statistical body 

models in order to estimate the depth for the different poses. Other approaches like [8] 

and [9] are constrained to a 2D movement tracking. Even if these approaches have a 

good motion tracking results, they cannot extract 3D motion from the video sequence.  

The approach proposed in [10] does not need prior learning or to previously set up 

key-points. However, it is constrained by the need for static cameras (e.g. no panning 

or zooming) and good image quality to make a background extraction. The image 

quality in broadcast videos is not always good, and the camera is not static in most of 

them, so it is especially challenging scenario. 

In our recent work [11] we presented a semi-automatic approach in which a set of 

2D key-points are manually marked in key-frames and then an automatic process 

estimates the camera calibration parameters, the positions and poses of the players 

and their body part dimensions. In that work, the conversion from 2D to 3D is 

processed in each key-frame separately, leveraging the estimations from key-frame to 

key-frame. This paper overcomes such approach by including all the considered key-

frames in the same processing loop simultaneously and combining multiple cues for 

the estimation of the in-betweens. 

3   Video-based Motion Capture 

The proposed motion capture process has two main phases: (1) manual selection and 

setup of key-frames, and (2) automatic calculation and reconstruction of movements 

between key-frames. First, some key-frames are manually selected from the video 

sequence (for example, the first and the last frames of the sequence). Depending on 

the length of the video sequence and the complexity of the movements, more key-

frames can be selected in between. For each key-frame, the floor definition and the 

location of the player must be set up. 

A reference element is needed to define the floor. This element has to be 

something in the scene with known sizes. Field marks and billboards are good 

examples of reference elements. Such element is used to describe a rectangle over the 

field, defining four reference points over this element. Four markers are located over 

the reference points (Fig. 1.a). To reconstruct the 3D scene, the distances between the 

reference points are needed (real world distances).  

The location of the player is defined by placing a set of 2D markers over the main 

body joints (head, shoulders, elbows, wrists, pelvis, hips, knees and ankles). A 2D 



human structure is used to define the location of the body joints in the image (Fig. 

1.c). The markers are used as the reference value in the reconstruction process (Fig. 

1.d). 

 

Fig. 1 (a) Definition of the 2D markers of the floor; (b) Resulting 3D reconstruction of the 

floor; (c), Definition of the main joint locations of the player using the 2D joint marker 

structure; (d) Resulting floor and player 3D reconstructions. 

 

(a) (b) (c) (d) 



Fig. 2 Diagram showing the element reconstruction process. The reconstruction of the player is 

segmented in six body parts: left arm (left upper arm and forearm), right arm (right upper arm 

and forearm), left leg (left thigh and shank), right leg (right thigh and shank), trunk (the 

graphical models from pelvis to head, ignoring the graphic of the head) and head. 

Secondly, the 2D positions of the scene elements (camera, ball and player) are 

computed in the key-frame in-betweens. The motion of the camera, the pose of the 

player and the trajectory of the ball are estimated for each frame using those 2D 

positions as input data for the 3D reconstruction. To estimate the 2D position of the 

scene elements in the key-frame in-betweens, we propose using a combination of 

different cues (the texture-based tracking of visible body parts and objects, and the 2D 

projections of the interpolation of their 3D positions and orientations from key-frame 

to key-frame), which are weighted in accordance to the grade of occlusion. In the case 

of the player reconstructions we also include constrained Inverse Kinematics (IK) in 

this process (Fig. 2). 

4   Reconstruction of the 3D Poses 

The 3D reconstruction algorithm uses a 3D kinematical structure (Fig. 3) to extract 

the 3D pose of the player in each frame. The pose is computed fitting the joint 

projections of the kinematical structure in the camera plane with the configured 2D 

locations of the joints. Fig. 4 shows the process followed to compute the 3D human 

body posing. The manually selected key-frames including floor configuration and the 

location of the player are used as input data. 

First, the parameters of the camera are computed using the floor definition from the 

manually configured key-frames. Such parameters are needed to re-project the 

kinematical structure into the camera plane. The camera intrinsic (focal length and 

principal point) and extrinsic (rotation and translation) parameters are computed using 

the homography between the image and the plane as shown in [12]. The homography 

is generated using a Direct Linear Transformation (DLT) as proposed in [13]. The 

lens distortion is not taken into account, as the distortion of the lens can be considered 

negligible in broadcast videos. 
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Fig. 3 3D representation of the kinematical structure with the posing features. 

Secondly, the multi-body mechanism fitting process fits the 3D human kinematical 

structure with the 2D human joint definitions, defining the location of the body joints 

in the 3D space. The posing features of the model (circles) are used to change the 

pose of the structure. Such features correspond to the main body joints as head, 

shoulders, elbows, wrists, pelvis, hips, knees and ankles. The orientations of the body 

joints are constrained to avoid non-feasible poses.  

 

Fig. 4 The reconstruction process schema. 

Pose changes are computed using the IK procedure proposed in [14]. In this 

approach, five kinematic chains are defined, all of them including the body segments 

linked with the involved posing features. The chains are shown in Fig. 5: (1) pelvis, 

hips and head posing features affecting also spine segments; (2) left hip, knee and 

ankle posing features; (3) left shoulder, elbow and wrist posing features; (4) right hip, 

knee and ankle posing features; and (5) right shoulder, elbow and wrist posing 

features. 

 

Fig. 5 Kinematical chains defined for the kinematical structure. From left to right: 1) pelvis, 

hips and head defining the trunk, 2) left hip, knee and ankle defining left leg, 3) left shoulder, 

elbow and wrist defining left arm, 4) right hip, knee and ankle defining right leg, 5) right 

shoulder, elbow and wrist defining right arm. 

Each of the posing features moves the body segments of the kinematic chain in a 

different way. The movement of the joints is constrained to limit their mobility to a 

range according to the corresponding movement of the human body.  

 The whole body is moved as a rigid body moving the posing feature of the 

pelvis. 



 The spine can be controlled using the posing feature of the head.  

 The upper limbs are controlled as a rigid body using the shoulder posing 

feature. This control rotates the limb using the clavicle segment as the 

rotation reference.  

 The upper and lower limbs can be controlled as articulated limbs using the 

posing features of the wrist or ankle. 

 The intermediate posing features (elbows and knees) control the swivel 

angles of the involved limb. 

Moreover, the floor configuration avoids the penetration of any element under the 

plane of the floor. If this happens, the IK approach can correct the position of the 

involved element chain. 

The sizes of the body segments of the player are unknown, so the fitting process 

must estimate such sizes using N key-frames and their configuration. This process is 

done iteratively using the Levenberg-Marquardt (LM) algorithm [15] (Fig. 6).  

 

Fig. 6 Levenberg-Marquardt implementation taking the configured key-frames as input data, 

and giving the estimated body measures for the tracked player. 

For each iteration, LM suggests a set of size values for the body segments to resize 

the 3D kinematical structure. Then, the 3D structure is fitted following a three step 

procedure:  

 The pelvis, head and shoulders of the model are fitted with the configured 2D 

markers for the pelvis, head and shoulders on the basis of the Efficient 

Perspective-n–Point (EPnP) algorithm [16]. As a result, the whole kinematical 

model is moved as a rigid object.  

 The limbs are fitted to their corresponding 2D markers. As the depth value is 

not measurable, the end-point posing features (wrists and ankles) are moved 



with a constant depth. The kinematical constrains relocates the rest of the 

posing features.  

 The re-projection error is measured re-projecting the kinematical structure into 

the camera plane and comparing the new projected points with the previously 

configured 2D markers. 

This fitting process is made for all the key-frames, and the re-projection error of all 

of them is combined to compute a global measurement error. The iteration finishes 

when the global error is less than a predetermined threshold, or the number of 

iterations is bigger than a predetermined number. 

To refine the result of the automatic fitting procedure, the model pose could be 

further relocated moving the posing features manually. This interaction could be 

made using forward or inverse kinematics. This relocation takes into account 

kinematical constraints and floor plane collisions. 

5   Experimental Results 

Fig. 7 shows some reconstruction examples using the proposed approach. As it can be 

seen, the re-projection of the reconstruction over the original image has a visually 

acceptable quality. 



 

Fig. 7 Examples of obtained results using TV broadcast videos. The generated 3D 

reconstruction is overlapping the frame image as a colored skeleton. 

In the first video sequence, two Hurling players are recorded and tracked during a 

frontal block. In this movement, both players are doing completely different 

movements (one attacking and the other blocking). It must be mentioned that the 

player on the left has the feet out of the image, making it more difficult to detect his 

legs. As shown in the first image sequence, the movement of both players is 

reconstructed. Each of the players has a different color skeleton. 

In the second sequence, a Gaelic Football player is recorded during a punt kick. 

Even though most parts of the body are clearly shown, his right arm is occluded 

during the movement. However, the results show that the right arm of the player is 

tracked even with the occluded movements. 

The third sequence displays a Basque Pelota player during a right-handed carom 

with spin. This video has wide camera motion, bad image quality and also the body 

parts of the player are occluded during the spin. The player rotates to the right first, 

and then to the left during the skill. As shown, the orientation of the reconstructed 

skeleton matches the orientation of the player in spite of the occlusions during the 

spin and the movement of the camera. 



Finally, the last sequence shows a Jai-Alai player during a backhand rebound 

while falling. This time, the image is blurred and the majority of the body is occluded 

because of the point of view. Although this last video sequence is the most 

challenging due to the complex movement, the results show how a very complex and 

highly occluded movement can be reconstructed. 

During the experimentation, it was observed that the configuration of the field 

plane had a significant effect on the body pose reconstruction. The more accurate the 

field definition, the better the reconstruction, and less refinement changes needed. 

The semi-automatic multi-body mechanism fitting, based on constrained IK and 

the camera calibration procedure, has demonstrated that plausible initial poses can be 

reconstructed from the camera view. Using this initial pose, the refinement step needs 

less interaction than a full manual 3D pose configuration done from the beginning. 

6   Discussion and Future Work 

This paper describes a method to extract human body motion from video broadcast 

sources related to TSGs. This method provides good results with less interaction than 

other alternatives. 

Broadcast videos have been recorded with un-calibrated cameras, and may include 

camera motion, multiple player interaction, occlusions and image noise. The proposed 

approach estimates the configuration parameters of the camera and body part 

dimensions of the player by an iterative process. The experimental results 

demonstrates that the 3D reconstruction extracted using this technique could be used 

to analyze the evolution of movements or techniques over the time, or even to 

generate animations for interactive applications like video games. 

In multi-view recordings, the inclusion of additional views can improve the 

reconstruction including depth measures. The movement reconstruction can be 

improved adding specific constraints to the model according to the player’s expected 

movements. In the future, we plan to study the multi-camera and the semantically-

constrained cases with respect to other motion capture systems. Also, the next phase 

includes a validation step to determine the accuracy of the 3D reconstruction by 

comparing it to a ‘gold standard’ (e.g. VICON motion analysis system). However, the 

current results visually indicate the capacity of the system to accurately track human 

movement. 
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