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Abstract Most recent visual odometry algorithms based

on sparse feature matching are computationally efficient

methods that can be executed in real time on desktop

computers. However, further efforts are required to reduce

computational complexity in order to integrate these solu-

tions in embedded platforms with low power consumption.

This paper presents a spacetime framework that can be

applied to most stereo visual odometry algorithms greatly

reducing their computational complexity. Moreover, it

enables exploiting multi-core architectures available in

most modern computing platforms. According to the tests

performed on publicly available datasets and an experi-

mental driverless car, the proposed framework significantly

reduces the computational complexity of a visual odometry

algorithm while improving the accuracy of the results.

Keywords Visual odometry � Grid structure � Multi-core

1 Introduction

In the past few years, there has been a growing interest in

advanced driver assistance systems (ADAS) and autono-

mous vehicles [2, 18, 19]. In general, this interest is closely

related to the sustainable, innovative and safe transport

systems aspect of smart mobility inside smart cities (see the

European cities report [10]). Intelligent vehicles increase

fuel efficiency thanks to environmentally friendly driving

and reduced traffic congestion. Additionally, considering

that human factors (alone or combined with other causes)

are involved in the vast majority of accidents [25], new

technological contributions are expected to reduce the

number of accidents thanks to more predictable behaviors

of vehicles and faster response times.

A key component of an autonomous car is the posi-

tioning module, used to compute the localization of the

vehicle and eventually to plan future motion. Different

types of sensors can be used to compute the position of the

car in real time, such as global navigation satellite systems

(GNSS), inertial navigation systems (INS), laser scanners

or video cameras [8].

Computer vision using cameras bring cheap and robust

localization possibilities that are usually classified as visual

odometry (VO) [26] or visual simultaneous localization

and mapping (V-SLAM) algorithms [13]. The main dif-

ference between both types of solutions is that, while VO

methods compute motion incrementally (frame after frame)

[9], V-SLAM and other similar solutions optimize the

global consistency of the path [5, 15]. For this purpose, a

reconstruction of the path is needed to detect the particular

situation where the car visits the same place twice (loop

closure condition, used to enforce global consistency).

From this description, it is evident that V-SLAM solutions

are in general more complex but also more accurate than

VO methods. However, global reasoning techniques such

as loop closure detection can severely affect results in case

of failure [26].

Given the relatively low computational complexity of

most VO methods and the implementation on desktop

computers, little attention has been paid to further reducing

complexity by exploiting available architectural resources

or redundant information. However, the integration of VO

algorithms in embedded platforms that may execute many

driving assistance algorithms requires efficient solutions.
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Only some algorithms, for which parallel architectures

can be used to notably increase speed, have been proposed

along with parallel implementations [31]. In this particular

case, for example, VO computation is based on dense

information. GPU architectures are very well suited for this

type of dense, pixel-based processing, because they contain

many processing cores (up to several thousands). As a

consequence, each thread can be allocated for the pro-

cessing of each pixel.

This paper proposes a novel framework in which most

stereo (i.e., using two cameras) VO solutions can be cas-

ted. This framework exploits the temporal redundancy of a

video sequence and the spatial distribution of features or

keypoints over images. Temporal redundancy is used to

stabilize the number of detected features over time and to

initialize the egomotion computation for the current frame

using the motion computed for the previous frame. The

spatial distribution of features over the input images is

used to partition them into a regular grid so that features

can be detected and described independently for each cell

of the grid, enabling a parallel implementation in multi-

core architectures. Moreover, the grid can be used to build

a mask for feature matching in an efficient manner. In Fig.

1 the common pipeline of most VO algorithms is sum-

marized (most VO solutions compute egomotion after a

stage in which keypoints are detected, described and

matched between frames) along with the proposed modi-

fications. The effectiveness of the framework is demon-

strated by applying it to a relatively standard VO

algorithm implemented in a robotic car in the framework

of the Taxisat FP7 project [23] that aims to develop a

driverless car that can operate autonomously following a

predefined path and stopping if obstacles are detected (see

Fig. 2).

The remainder of this paper is organized as follows.

Section 2 presents the state of the art of VO algorithms.

In Sect. 3 the proposed approach is introduced. Experi-

mental results are analyzed in Sect. 4. We close the paper

with a short conclusion and an outlook on future work in

Sect. 5.

2 Related work

VO is a particular case of structure from motion (SfM) [12,

30]. In general, VO assumes that the sequence of images

was acquired with a single array of cameras capturing the

images while moving though space. In most cases, the

camera array is composed of one (monocular) or two

(stereo) cameras. VO algorithms compute the path by

incrementally estimating motion over temporally consec-

utive frames [26].

Two steps can be clearly distinguished in most stereo

VO algorithms (see Fig. 1):

1. Correspondence search between frames. Identify cor-

responding points between consecutive frames.

2. Motion estimation. Given the computed correspon-

dences between points in two frames taken by the same

camera in different instants, motion between both

positions of cameras can be computed.

Fig. 1 Execution pipeline implemented by most VO algorithms (in black) along with the proposed spatial (in blue) and temporal (in red)

modifications

Fig. 2 Taxisat driverless car
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2.1 Correspondence search

According to the authors of [26], feature-based methods are

in general preferred over other solutions that use the

intensity information of all pixels in the input images

(appearance-based methods) [20, 28]. In [20], rotation is

extracted from the intensity profile of a column intensity

graph. Then speeds are estimated based on the rate of

image change. In [28], feature-based tracking is used to

obtain a first estimation of the motion of the car. Then, an

appearance-based approach is deployed that improves the

accuracy of the computed rotation of the vehicle.

Feature-based solutions select a set of keypoints to

compute motion. A wide variety of methods have been

used to select reliable keypoints (feature detection) and to

compare and associate keypoints corresponding to different

images (feature description and matching). Harris corner

detector and SURF are implemented in [14] with similar

results. In [9], two types of custom masks designed to

detect blobs and corners, respectively, are used.

Some publications such as [16, 27] implement different

feature detection techniques to compare their results. After

evaluating detectors on different scenarios, the authors of

[16] chose CenSurE [1]. On the other hand, after com-

paring a different set of detectors and trackers, the authors

of [27] concluded that the results were not due to the

accuracy of the detector, but rather to the distribution of

features in the images. According to their results, a uniform

distribution of features results in better motion estimation.

Different techniques can be employed to force a homoge-

neous distribution of the computed keypoints. One of the

simplest methods is to partition the input images into a

regular grid and force a uniform distribution of the total

number of features over the cells of the grid [21]. In [14], a

similar grid is used to discard keypoints in cells of the grid

that contain too many candidates compared to other

regions. The use of grid or pyramid-based structures led to

successful implementations in areas such as image cate-

gorization [11, 17] and inspired the extension of this type

of techniques to other areas.

2.2 Motion estimation

Once the feature correspondences between frames have

been established, motion between these frames can be

computed. Most VO algorithms include an optimization

strategy (to minimize the reprojection error of the matching

results according to the cameras parameters and the com-

puted motion) and a method to increase robustness against

outliers.

Minimization can be implemented as a 2D-to-2D, 3D-

to-2D or 3D-to-3D point registration method. 3D-to-2D

registration is the most implemented method. In the

monocular case because it enables faster data association

[26], and in the binocular case because it provides more

accurate results [22]. Despite these advantages, some

authors have proposed algorithms that avoid explicit 3D

point computation using triangulation even in multicamera

setups. This is the case of [4], where quadrifocal tensors are

used for motion estimation. Nevertheless, 3D-to-2D reg-

istration is the most used technique in systems with mul-

tiple cameras. Optimization of the reprojection error is

generally performed using minimization techniques such

as Gauss–Newton [9] or Levenberg–Marquardt algorithm

[28, 29].

To increase robustness against outliers, most methods

include an implementation of the RANSAC algorithm [9,

14, 16]. Also, enhanced smoothness can be obtained using

dynamic models of the vehicle along with Kalman filtering

[9, 14].

3 Proposed method

Our stereo VO framework consists of an adaptive grid-

based correspondence search stage and a temporal consis-

tent motion estimation stage.

3.1 Adaptive grid-based correspondence search

The correspondence search step implements the proposed

adaptive grid-based strategy and it includes feature detec-

tion, description and matching (see Fig. 1). The input

images are divided in grids of H row and W column cells.

Unlike previous grid-based solutions that only use the grid

structure in the feature detection step in order to obtain a

homogeneous distribution of feature keypoints [14, 21], our

proposal consistently uses this grid through feature detec-

tion, description and matching steps. Thus, not only the

positive effects over motion accuracy of a homogeneous

distribution of keypoints can be demonstrated; also, feature

detection and description can be parallelized thanks to the

grid structure. Moreover, this structure can also be used to

avoid comparing keypoints that belong to distant cells

during the feature-matching step, as it will be shown later.

Efficient methods were selected for feature detection and

description, because in VO for ground vehicles corre-

sponding points are similar in consecutive frames and thus

complex requirements such as rotation or scale invariance

are not necessary [9]. According to our experiments, the

implementation of robust methods against rotation or scale

changes does not result in better motion estimation

accuracy.

First, features are detected in each image of the input

stereo pair. In this paper, we decided to use features from

accelerated segment test (FAST) [24] due to its
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computational simplicity and easy parametrization. To

obtain a homogeneous distribution of features, FAST is

applied individually to the cells of a grid-based represen-

tation of the input stereo pair. As opposed to an imple-

mentation with a fixed threshold value t, we propose the

implementation of an adaptive FAST threshold to generate

the desired number of features in each cell (i.e., the desired

number of features N for the image divided by the number

of cells). Using a fixed value for the FAST threshold

implies obtaining a variable number of features for each

frame that may be insufficient to accurately compute

motion or excessive (in this case the excess keypoints are

simply removed; however, computing these unused key-

points increases computational complexity). Moreover, an

adaptive FAST threshold favors that the same points are

detected in consecutive frames under illumination or

camera parameters changes. For this reason, and consid-

ering the high similarity of consecutive frames of a video

sequence, we propose to update the FAST threshold for

each frame tk using the threshold of the previous frame tk�1

and the number of detected points M in this same image

according to the following rule:

tk ¼
tk�1 � Dt; if M\N:

tk�1 þ Dt; otherwise:

�
ð1Þ

Given that the computation of the keypoints for the left and

the right images of the stereo pair is independent, two

threads can be used to compute the keypoints of each

image. Moreover, thanks to the proposed grid structure,

different threads can be used to compute the features inside

each cell.

Next, features are described. Feature description can

also be easily parallelized by using different threads for

each image of the input stereo pair and for each cell of the

grid. In this particular implementation, also for simplicity

purposes, we decided to use binary robust independent

elementary features (BRIEF) [3]. The BRIEF descriptor

computes for each keypoint a nb bit string.

Finally, the keypoints are compared and matched. In this

case, we use the Hamming distance of the BRIEF

descriptors (a very efficient operation in CPUs). Two types

of matching are performed in this step:

1. Spatial matching or stereo matching. Features captured

by both cameras at the same instant are matched to

enable 3D triangulation from the 2D coordinates of

these features.

2. Temporal matching or optical flow computation.

Features captured by the same camera in consecutive

frames are matched to enable motion computation.

In order to limit the computational complexity, a priori

constraints can be imposed to limit the number of potential

matches. For stereo matching, we know that in a rectified

stereo pair, correspondences have to lie on the same epi-

polar horizontal line of the image. Moreover, an interval of

interest disparities can be established limiting the search

range between a minimum and a maximum disparity. For

optical flow computation, correspondence search has to be

performed in all directions, but a maximum distance

between candidates can be established if we know the

maximum motion of the camera between frames. To

compute the minimum and maximum disparity and the

maximum distance between candidates, camera geometry

concepts have to be used. For stereo matching it is rela-

tively straightforward, because the disparity is only related

to the focal length of the cameras, the baseline and the

distance of points [6]. However, for optical flow compu-

tation the maximum rotation and translation of the cameras

between consecutive frames has to be considered, along

with the projection matrices of the cameras [12].

Imposing these disparity and distance constraints before

matching would mean that the Euclidean distance of every

pair of features has to be computed. Unfortunately, com-

puting Euclidean distances in order to avoid computing

unnecessary Hamming distances (which is a less complex

operation on today CPUs) is a nonsense. To overcome this

limitation, we propose an efficient cell-based solution using

the grid deployed for feature detection and description. In

this way, we can mask keypoints that belong to distant cells

using a block-based fast strategy.

For stereo matching, given the maximum disparity dmax

and the cell width W , the cells of the right image that

contain candidate matches for a certain cell of the left image

range from the same cell of the left image to ddmax=We cells

to the left. Figure 3 contains a graphical explanation. In this

particular example, ddmax=W ¼ 2e, so the candidate cells

include the cell occupying the same position as the one in

the left image and its two neighbors to the left.

A similar procedure is applied for selecting the candi-

date cells for optical flow matching. In this case, the vector

that joins two correspondences is two dimensional with a

maximum length of Dmax pixels. Cells dimensions are W �
H pixels. In general, the search cells in the right image

Fig. 3 Grid-based a priori mask computation for stereo matching.

The left image keypoints belonging to the cell highlighted in a can

only be matched to the keypoints belonging to the cells of the right

image highlighted in b
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include a rectangle of 2� dDmax=He þ 1 row cells and 2�
dDmax=We þ 1 column cells centered in the cell in the

same position to the one of the reference image. Figure 4

contains a graphical representation of a situation where

dDmax=We ¼ 1 and dDmax=He ¼ 2, so the search region is

a 5� 3 rectangle of cells. Of course, potential search cells

that lie outside the images are not considered.

After matching, false matches can be eliminated

checking that stereo matches lie on the same horizontal

line, that are separated by a distance smaller than dmax and

that optical flow matches are separated by a distance

smaller than Dmax. Grid-based masking avoids most of

these erroneous correspondences but not all. Then,

remaining false matches can be removed using the circular

match strategy [9]. This consistency check strategy verifies

that a complete loop of temporal/spatial matches finishes in

the departure point. Only matches that verify the circular

match condition are used for motion computation.

3.2 Temporal consistent motion estimation

Using the valid matches previously obtained (lets suppose

L valid circular matches), we compute the camera motion

by minimizing the sum of reprojection errors. In particular,

we use Levenberg–Marquardt minimization to find the

rotation and translation vectors that best adapt to the cor-

responding 3D points in space of the previous stereo pair of

frames Xk�1;i and the 2D coordinates of the features

detected in the current stereo pair xk;i. If we define f l
r;t to be

the function that projects 3D points to 2D points in left

camera considering that is has moved according to a

rotation vector r and a translation vector t, and similarly f r
r;t

for the right camera, the cost function to minimize is:

XL

i¼1

k xl
k;i � fl

r;tðXl
k�1;iÞ k þ k xr

k;i � fr
r;tðXr

k�1;iÞ k : ð2Þ

To increase robustness against outliers, this minimization

procedure is integrated in a RANSAC scheme performing I

iterations (less iterations are needed if the number of

RANSAC inliers exceeds a certain percentage p of the total

number of pixels used to compute motion). Finally, Kal-

man filtering is applied to the translation and rotation

vectors to produce a statistically optimal estimate of ego-

motion [9]. Our main contribution to motion estimation is

related to the observation that the vehicle motion is rela-

tively smooth. As a consequence, we expect the translation

and rotation vector computed for consecutive frames to be

similar. For this reason, we propose to use the Kalman filter

prediction (temporal filtering) as an initialization value for

the Levenberg–Marquardt/RANSAC procedure (error

minimization) in each iteration as shown in Fig. 1 to reduce

the number of iterations needed for convergence and to

improve the accuracy of the result thanks to a better

departure point for optimization.

To improve the reproducibility of the proposed algorithm,

we summarize in Table 1 all the parameters involved.

4 Experimental results

To test the performance of the proposed VO algorithm, two

different benchmarking scenarios were designed. First, the

Fig. 4 Grid-based a priori mask computation for optical flow. The

previous frame keypoints belonging to the cell highlighted in a can

only be matched to the keypoints belonging to the cells of the current

image highlighted in b

Table 1 List of parameters of the proposed VO algorithm

Correspondence search Grid size: W � H

Feature detection (FAST) Threshold: t (fixed value) or Dt step (adaptive)

Target number of detected points: N

Feature description (BRIEF) Number of bits: nb

Feature matching Maximum distance: Dmax

Maximum disparity: dmax

Egomotion estimation Levenberg–Marquardt/RANSAC Number of iterations: I

Minimum percentage of inliers: p

Kalman filter Covariance 6� 6 matrix of the translation process noise: Rt

Covariance 3� 3 matrix of the translation observation noise: Bt

Covariance 6� 6 matrix of the rotation process noise: Rr

Covariance 3� 3 matrix of the rotation observation noise: Br
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improvement due to each of the proposed ideas was eval-

uated using three different laboratory CPUs and the KITTI

odometry evaluation dataset with ground truth [8]. Then,

we tested the performance of the final VO solution on the

Taxisat vehicle.

4.1 Dataset with ground truth

The KITTI Vision Benchmark Suite [8] consists of six

individual benchmarks designed to evaluate the perfor-

mance of different algorithms that are generally integrated

in ADAS or autonomous vehicles. One of the six

benchmarks is designed to test VO and V-SLAM algo-

rithms. It contains 22 sequences of images recorded with

a stereo pair of cameras embedded in a car. A ground

truth and an evaluation methodology are provided for the

first 11 sequences. The other 11 sequences are provided

without this type of information and the results have to be

uploaded to the KITTI server to obtain an evaluation of

the accuracy of the results along with the position in a

ranking of VO/V-SLAM algorithms. As a consequence,

the first 11 sequences are useful for optimal parameter

setting and intensive testing of different configurations as

done in this paper. In order to evaluate the scalability of

the proposed algorithm over different computing archi-

tectures, three different CPUs were used for the labora-

tory tests: Intel Core i5-3330 (four cores, four threads,

TDP 77 W), Intel Core i7-2640M (two cores, four

threads, TDP 35 W) and Intel Atom N270 (one core, two

threads, TDP 2.5 W). TDP stands for thermal design

power. When the number of threads exceeds the number

of cores, it means that Intel Hyper-Threading Technology

is implemented in this CPU to enable that each core

handles more than one thread. Qt1 and TBB2 were inte-

grated in the implementation of the algorithm to enable

parallel computing using multiple threads along with

OpenCV3 that already implements some of the methods

described in this paper.

In this section, not only the performance of the proposed

spatiotemporal solution is tested. On the contrary, the

effect of both spatial and temporal modifications on accu-

racy and computational complexity is analyzed separately

to distinguish their contribution to the performance of the

final solution. With this object, first the performance of a

raw VO algorithm without the proposed modifications is

summarized in Table 4 (‘Raw’). The parameter configu-

ration used is W ¼ 1� H ¼ 1 (no grid), t ¼ 10, N ¼ 500,

nb ¼ 256, Dmax ¼ 200, dmax ¼ 150, I ¼ 50, p ¼ 85 %,

Rt ¼ 10�4 � I, Bt ¼ 10�3 � I, Rr ¼ 10�3 � I and

Br ¼ 10�4 � I.

4.1.1 Grid-based correspondence search

As it was previously explained and as it is depicted in Fig.

1, the grid structure is integrated in feature detection,

description and matching stages. The first benefit is the

computational complexity reduction of the tasks that can be

parallelized. Figure 5 depicts the execution time of feature

detection and description for different parallelism config-

urations of the algorithm: without any level of parallel-

ization (ST), with two threads performing in parallel the

same task for the left and right images (TI), and finally with

a different thread processing each block of the grid (TB).

The analysis is repeated for different grid distributions and

for the three tested CPUs. The use of two threads for

separate processing of the left and right image (TI) clearly

speeds up the algorithm because both processes are com-

pletely independent. The gain is independent of the grid

size. The grid-based implementation (TB) also enables a

speedup of the algorithm thanks to multithreading pro-

cessing of the cells of the grid. In this case, the gain

depends on the grid size. For large grid sizes the speedup

(a) (b) (c)

Fig. 5 Feature detection and description execution time: a Intel Core i5-3330, b Intel Core i7-2640M and c Intel Atom N270

1 http://qt-project.org/.
2 http://www.threadingbuildingblocks.org/. 3 http://opencv.org/.
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can be similar to the TI speedup. When both types of

parallelization are combined (TB?TI) computation time is

further reduced, except in the case of the Intel Atom CPU.

This processor only contains one core and two threads can

be executed simultaneously. As a consequence, the com-

bination of two parallelization techniques (TB?TI) that

results in at least four threads is not effective on the Intel

Atom processor. To give an idea of the parallelization

efficiency, when using a 8 � 4 grid, the single thread 11.62

ms execution time on the Intel Core i5-3330 processor can

be reduced to 6.22 ms using TI (46 % speedup) and to 4.52

ms (61 % speedup) using TB?TI. In the case of the Intel

Core i7-2640M processing unit, the single thread execution

time of 10.88 ms is reduced to 7.42 ms when integrating TI

(32 % speedup) and to 6.18 ms (43 % speedup) when

combining TB and TI. Finally, when testing the Intel Atom

N270 platform, the 73.97 ms single thread execution time

can be reduced to 51.06 ms (31 % speedup) if TI is used.

However, computation time cannot be further reduced

using TB due to the limited number of threads.

The second benefit is better motion estimation accuracy,

thanks to a more homogeneous distribution of feature

points. To verify the influence of the distribution of the

feature points in the odometry results, we tested the aver-

age error on the KITTI first 11 sequences using different

grid configurations (the number of columns being always

equal or larger than the number of rows because the hori-

zontal resolution is larger than the vertical resolution).

Unlike the results for underwater navigation [21], grid-

based feature detection and description seems to improve

the accuracy of the estimated path for a subset of grid

configurations according to Tables 2 and 3. Large grid

configurations such as 4 � 2 or 8 � 4 that force a homo-

geneous distribution of features in both horizontal and

vertical directions are beneficial for motion estimation

accuracy. These results agree with those presented in [27],

where it is concluded that for on-road vehicles (in the

mentioned case integrating only one camera) a uniform

distribution of feature keypoints favors egomotion esti-

mation accuracy.

Even if the improvement is small in most cases (a 7 %

improvement in rotation error and a 11 % improvement in

translation error), it is always associated with faster exe-

cution times (see Fig. 5).

Finally, the third benefit of the grid structure is a faster

execution even in non-parallel architectures, thanks to the

speedup of feature matching. As previously explained, the

use of grid-based masking was also expected to reduce the

computation time of feature matching. Grid-based masking

is a computationally efficient way of limiting the number of

feature points to be compared. Because computing the

Euclidean distance between all potential candidates for

(a) (b) (c)

Fig. 6 Feature matching execution time: a Intel Core i5-3330, b Intel Core i7-2640M and c Intel Atom N270

Table 2 Translation error (%)

of the VO algorithm versus the

number of rows (left) and

columns (up) of the grid

structure

1 2 4 8

1 2.36 2.36 2.43 2.40

2 � 2.46 2.19 2.64

4 � � 2.54 2.20

Table 3 Rotation error (�/m) of

the VO algorithm versus the

number of rows (left) and

columns (up) of the grid

structure

1 2 4 8

1 0.0142 0.0132 0.0136 0.0127

2 � 0.0135 0.0128 0.0131

4 � � 0.0132 0.0126
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matching has a high computational cost, we can take

advantage of the grid partitioning of the images in our

algorithm to avoid comparing pixels that are located in

distant cells.

If Fig. 6, the computation time of feature point

matching is plotted when comparing all possible candi-

dates, or when masking the possible matches using pixel-

based Euclidean distance computation or the proposed

grid-based masking. Euclidean distance masking increases

the computation time because the distance between all the

possible candidates is computed. Compared to pixel-based

masking, grid-based masking is much more computa-

tionally efficient because it compares buckets of pixels.

Compared to the no masking case, a priori masking of

impossible matches (very distant pixels in optical flow or

pixels on different horizontal lines in stereo matching) is

faster when using large grids; and in addition, it makes

possible to keep a higher number of matches for motion

computation. If these matches are not prohibited before

matching, they will have to be discarded after, loosing

potential matches for motion computation. According to

the results presented in Fig. 6, for a 8 � 4 grid config-

uration, grid-based masking produces a 30, a 27 and a

43 % speedup in the Intel Core i5-3330, Intel Core i7-

2640M and Intel Atom N270 implementations, respec-

tively. As expected, the speedup is not related to the

parallel architecture of the processors. On the contrary,

the speedup is higher for the single-core processor.

According to the previous experiments, we selected the

8 � 4 grid configuration due to the balance between

accuracy improvement and execution speedup. In Table 4,

the results of the raw algorithm incorporating grid-based

feature detection, description and matching are presented

(‘Raw?grid’). The same parameter values than in the raw

solution without grid are used except for the 8 � 4 grid

instead of the 1 � 1 configuration.

4.1.2 Temporal consistency

The other major proposed modification is the integration of

a temporal mechanism to obtain a stable number of feature

points over time and to use the computed motion of the last

(a) (b) (c)

Fig. 7 Comparison of the computation time versus the average number of features when using a fixed value and a variable value for the FAST

feature detector threshold: a Intel Core i5-3330, b Intel Core i7-2640M and c Intel Atom N270

Table 4 Accuracy and

computation time of the

proposed modifications to the

raw VO algorithm

Method CPU Runtime Error

Detection and

description

(ms)

Matching

(ms)

Egomotion

(ms)

Total

(ms)

Translation

(%)

Rotation

(�/m)

Raw i5 11.32 5.09 1.95 18.36

i7 10.96 8.72 2.74 22.42 2.36 0.0142

Atom 74.68 77.85 24.40 176.93

Raw?grid i5 4.52 3.40 2.91 10.83

i7 6.18 6.00 5.38 17.56 2.20 0.0126

Atom 51.06 43.04 46.73 140.83

Raw?grid?stable i5 3.43 4.34 2.71 10.48

i7 4.26 7.72 4.72 16.70 2.29 0.0124

Atom 33.26 52.95 38.70 124.91

Proposed i5 3.48 4.35 1.02 8.85

i7 4.46 8.06 1.56 14.08 2.09 0.0122

Atom 33.04 52.21 10.09 95.34
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pair of frames as a departure point for minimization in the

next pair of frames.

In order to stabilize the number of detected features over

time and to further speedup the feature detection process,

an adaptive threshold for the grid-based FAST detector was

proposed. In Fig. 7, the average number of detected fea-

tures over all sequences is represented versus the compu-

tation time for feature detection and description when using

an adaptive and a fixed FAST threshold. t ¼ 10 is used in

the fixed threshold configuration and Dt ¼ 1 is used in the

adaptive threshold configuration. According to our exper-

iments, larger Dt values do not speedup the algorithm and

result in reduced accuracy. According to Fig. 7, the

speedup is more important when computing a small set of

feature points (systems with a limited computational

power). For example, for the selected configuration

(N ¼ 500), feature detection and description is 24 % faster

for the adaptive solution on the Intel Core i5 CPU, 31 % on

the Intel Core i7 processor and 35 % on the Intel Atom

platform.

Finally, the proposed motion estimation loop reduces

the convergence time of the egomotion estimation stage

(essentially Levenberg–Marquardt/RANSAC, since the

Kalman filter computation time is negligible) as can be

observed in Fig. 8. 62, 67 and 74 % speedups are obtained

for the Intel Core i5, Intel Core i7 and Intel Atom imple-

mentations, respectively.

To summarize the performance of the proposed solution

and compare it to a solution without the proposed optimi-

zations, Table 4 shows its accuracy and execution time.

The ‘Raw?grid?stable’ entry adds to the ‘Raw?grid’

configuration the stabilization of the number of detected

features over time. Finally, the ‘Proposed’ entry refers to

the proposed algorithm containing all the mentioned

modifications. The parameter configuration used for both

entries of the table is W ¼ 8� H ¼ 4, Dt ¼ 1, N ¼ 500,

nb ¼ 256, Dmax ¼ 200, dmax ¼ 150, I ¼ 50, p ¼ 85 %,

Rt ¼ 10�4 � I, Bt ¼ 10�3 � I, Rr ¼ 10�3 � I and

Br ¼ 10�4 � I. According to this table, not only a 52 %

(Intel Core i5-3330), 37 % (Intel Core i7-2640M) and

46 % (Intel Atom N270) speedup is obtained considering

the total computation time. Moreover, better egomotion

estimation accuracy is attained due to a more uniform

distribution of features over the input stereo pair, a stable

number of detected features over time and a temporally

consistent initialization of error minimization for motion

estimation. As a reference, the accuracy and complexity of

other VO solutions is listed in [7].

4.2 Taxisat vehicle tests

In the case of the real scenarios tests performed using the

robotic car with two cameras, a Trimble 7400 DGPS was

installed in the vehicle. With a positioning error of a few

centimeters, it can be used as soft groundtruth reference to

evaluate the VO results.

For these tests, we used the Taxisat vehicle already

presented in the Introduction. The VO system in the

Taxisat vehicle is composed of two Point Grey Flea3

cameras FL3-GE-13S2C-C (baseline 50 cm) fixed to the

Fig. 8 Egomotion loop speedup. In blue, computation time of the

egomotion estimation stage without the proposed egomotion loop. In

red, the same computation time with the proposed egomotion loop

(a) (b)

Fig. 9 Comparison of the

estimated path for two

trajectories
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front of the vehicle and connected via Gigabit Ethernet to

an industrial computer with an Intel Core i7-2655LE 2.2

GHz CPU. The Intel Core i7-2655LE 2.2 GHz CPU TDP is

25 W, it contains two processing cores and can handle up

to four threads. After the system installation, both cameras

were calibrated using a checkerboard pattern. Finally, a

master/slave configuration was selected for synchroniza-

tion purposes (hardware synchronization using a trigger

wire linking both cameras).

After several days of field tests, 15 min of VO data logs

including DGPS information have been recorded and more

than an hour of VO-only data logs are available. Motion

was computed under sunny, cloudy and even indoor con-

ditions if there is sufficient illumination (exposure times

varying from \1–10 ms). The Taxisat vehicle is a low-

speed robot with a maximum speed close to 4 m/s, so speed

is not a limitation for the accuracy of the system. Finally,

the presence of dynamic objects such as cars or pedestrians

does not affect egomotion estimation. This type of dynamic

objects would have to cover most of the images to discard

the background as a reference for motion estimation during

Levenberg–Marquardt/RANSAC optimization and errone-

ously compute motion with respect to dynamic objects.

In Fig. 9, the computed path is compared to the path

obtained from the DGPS positioning device for two dif-

ferent trajectories. The results obtained on the Taxisat

vehicle cannot be directly compared to the results obtained

on the KITTI dataset for several reasons. First, the sam-

pling rate of the DGPS was configured to 2 Hz during the

tests. Second, the Taxisat vehicle reaches a maximum

speed of 4 m/s. As a consequence, the rotation error, which

is divided by the translation to be expressed in rad/m, is

much higher than in the KITTI dataset. Despite not being

comparable to KITTI data, the results obtained for the two

presented trajectories reflect the performance of the pro-

posed VO algorithm in the Taxisat vehicle. For the two

trajectories plotted in Fig. 9, the average measured trans-

lation error is 3.48 % and the average rotation error

0.1149�/m. These errors are measured each time that the

translation of the vehicle exceeds 20 m. In this manner, the

low rate of DGPS information is compensated with long

enough measurement intervals.

The parameter configuration used is W ¼ 6� H ¼ 4,

Dt ¼ 1, N = 1,000, nb ¼ 256, Dmax ¼ 75, dmax ¼ 75,

I ¼ 70, p ¼ 85 �%, Rt ¼ 10�4 � I, Bt ¼ 10�2 � I, Rr ¼
10�4 � I and Br ¼ 10�3 � I. Compared to the laboratory

tests, the new parameter values are adapted to the resolu-

tion of the cameras installed in the Taxisat vehicle (644 �
482). Given the cameras refresh rate of 10 frames per

second, the number of detected features is increased to

1,000, as well as the minimization iterations to 70, to take

full advantage of the 100 ms between frames.

5 Conclusion

In this paper, we presented a new spatiotemporal frame-

work in which most VO algorithms can be casted. Tem-

poral improvements are related to using redundant

information from the previous pair of frames. Spatial

improvements homogeneously distribute detected features

over the images. Both types of optimizations improve the

accuracy and the computational complexity of VO algo-

rithms that can be integrated in the proposed framework.

Results are demonstrated on three different CPUs,

ranging from a four core and 77 W platform to a one core

and 2.5 W processor. Computation time is almost halved

for the three architectures, demonstrating the scalability of

the proposed approach. Experiments were also conducted

on an embedded platform on the Taxisat vehicle, validating

the laboratory results.

The code developed in the framework of the Taxisat

project is currently being integrated in the Viulib� com-

puter vision library, developed by Vicomtech-IK4. A demo

sample will be available in future releases of Viulib�.

Future work includes the integration of new types of

odometry sensors in the car such as GNSS or INS with two

purposes. First, to compare the results of VO with other

types of sensors. And second, to integrate the information

of many types of systems to obtain a more accurate and

robust estimation of the vehicle odometry.
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