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Ontology processing is arguably a time-consuming process with
high associated computational costs. Query actions constitute a
crucial part of the reasoning process and are a primary source of
time consumption. Reflexive ontologies (ROs) is a novel approach
intended to reduce time consumption problems while providing a
fast reaction from ontology-based applications.

In this article we present the implementation of a knowledge-
based clinical decision support system (CDSS) for the diagnosis of
Alzheimer’s disease, which was the benchmark used to evaluate
the impact of RO in the overall performance of the system.

The implementation details and the definition of the implemen-
tation methodology are exposed in this article, along with the
results of the evaluation. Some novel techniques that aim to opti-
mize the performance of ROs are also presented with highlights
of the test application introduced in our previous work.
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INTRODUCTION

Ontologies are defined in the computer science domain as the explicit speci-
fication of a conceptualization (Gruber 1995) and are used in an increasing
number of computerized applications (McGuiness 2003). Ontological
engineering has become a recurrent research topic in different areas of
knowledge (Chandrasekaran et al. 1999).

One of the areas where the use of knowledge engineering techniques
enhances traditional approaches is the medical domain. One example of
the aforementioned is in a recently presented Clinical Decision Support
System (CDSS) by Toro et al. (2012), where ontologies are used to model
the domain and then extract explicit and implicit knowledge, allowing a
practical semantic approach to the diagnosis stage of the medical practice.
In the aforesaid and similar approaches, massive performing of queries
and subsequent processing of their results is one of the most intensive tasks.

Performing those queries over the knowledge base implies a high com-
putational cost, especially when compared to classical implementations; for
example, using relational databases instead. Therefore, the development of
techniques aimed toward acceleration of the ontology query process without
losing reasoning ability meets a clear need.

In order to address the aforesaid gap, Toro et al. (2008) introduced the
concept of reflexive ontologies (ROs) as a method intended to speed up
query processes by storing performed queries in the ontology itself
(self-containment). As pointed out in the aforesaid work, one of the benefits
of having self-contained queries lies in the speeding up of the query process,
in a way similar to what database caching does with relational data models
(Tolia and Satyanarayanan 2007).

The acceleration of the querying process is based on the hypothesis
that similar queries tend to be recursive over time. Similarly, some parts of the
ontology tend to be asked more frequently than others. RO is able to utilize this
information in order to perform queries in a more cost-effective way.

In this article we present the implementation of a knowledge-based CDSS
for the diagnosis of Alzheimer’s disease (AD), making use of an RO. In the
implemented system we performed a benchmarking in order to observe the per-
formance differences between a system using RO and a system using conven-
tional ontologies. Simultaneously, the system was used to design and test new
techniques that delve into the extraction of implicit knowledge from the RO.

The goal of this comparative evaluation was to determine the reliability
of the system and the effectiveness of the proposed optimizations.

The article is organized as follows: in the following section we present
related work regarding the improvement of query answering along with
some background concepts related to ROs and autopoiesis. Next we describe
the implemented system. Then we present the evaluation methodology
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and the results obtained from the evaluation. In the final section, we discuss
conclusions and future work.

RELATED WORK

Relevant work has been reported recently in the field of query answering
performance improvement over knowledge bases. Kollia et al. (2011) intro-
duced optimization techniques that improve query answering performance
for SPARQL-OWL (Simple Protocol and RDF Query Language; Web Ontology
Language) queries. One of the optimizations presented in Kollia et al. (2011)
consisted of utilizing precomputed information (e.g., the class hierarchy) in
order to find the answer to a query by means of a cache lookup. This tech-
nique, along with some other optimizations such as axiom reordering, is
shown to help improve query answering performance.

Our approach is similar to the one presented by Kollia et al. (2011) in the
sense that both benefit from previously computed information in order to
perform a cache-like access to the query answer. However, our approach
goes further in the sense that RO keeps track of all of the queries made over
the ontology instead of using some precomputation made by the reasoner.

Amir and McIlraith (2005) introduced an approach known as partition-
based logical reasoning, which argues to improve the efficiency of the
reasoning process. Algorithms for reasoning with partitions of related logical
axioms were presented in their work.

Grau et al. (2005) proposed the concept of partitioning a Web Ontology
Language ontology in subdomains (modeled as separate ontologies) using
e-connections to combine them. The aim of this approach was to reduce
the knowledge base portion that the reasoner had to work with by keeping
irrelevant components of the ontology unloaded.

The work by Amir and McIlraith (2005) and Grau et al. (2005) was based
on the idea of reducing the search space within the knowledge base in order
to improve reasoning efficiency. Our work tackles the reasoning time issue
from a different perspective, which is based on query caching rather than
ontology partitioning.

The defining property of RO that claims to accelerate the querying
process is similar to query caching techniques traditionally used in the context
of relational databases. In particular, within the domain of web applications,
many different techniques have been presented in order to generate efficient
caches from web content in constant transformation (Altinel et al. 2002; Amiri
et al. 2003). Analogously, an RO has the ability to generate and maintain an
efficient cache system even when dynamic knowledge bases are involved.

ROs have the ability to maintain a history of the queries made over the
ontology itself, which acts as a cache due to the faculty of query retrieval,
which was explained in depth in Toro et al. (2008). In addition, an RO has
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the ability to provide a more refined cache system, other than a simple query
history, due to the property of self-reasoning over the query set. In this man-
ner, the size of the cache can be reduced (or extended depending on specific
needs) according to implicit knowledge.

Cobos et al. (2008) proposed an architecture that uses the reflexivity con-
cept in order to perform a fast semantic retrieval in the film heritage domain.
The results of the experiment showed a clear efficiency gain, with an improve-
ment of two orders of magnitude in the execution time. Although the concept
of using an RO for a fast query recovery is the same for both cases, the archi-
tecture and implementation differ to some extent from our approach.

The experiment by Cobos et al. (2008) was carried out using only simple
queries (containing a simple condition clause) and the ontology they used
within the experiment included 63 individuals. In this article we test the RO
concept in a more complex environment, because we use complex queries
and our domain ontology contains more than 1� 104 individuals. In addition,
our system handles a nonstatic ontology—that is, an ontology that grows over
time—whereas the system used by Cobos et al. (2008) worked with a static
ontology. The implementation of autopoiesis (self-creation, as explained in
the section on autopoiesis) makes possible the use of nonstatic ROs.

Reflexive Ontologies

The RO concept was introduced by Toro et al. (2008) to define the capability
of an abstract structure of knowledge (an ontology and its instances, in this
case) of maintaining, in a persistent manner, every query performed on it and
storing those queries as individuals of a class that extends the original
ontology. According to the formal definition proposed by Toro et al.
(2008), ‘‘a Reflexive Ontology is a description of the concepts, and the
relations of such concepts in a specific domain, enhanced by an explicit self
contained set of queries over the instances’’ (p. 176).

The advantages of having self-contained queries are related to the accel-
eration of the querying process as well as to the implicit knowledge that
potentially can be obtained. This article delves into the first benefit; that is,
the ability to speed up the querying process.

Figure 1 shows the logical structure of an RO, which is, basically, a
traditional ontology extended with a reflexive structure (mainly composed
by the query instances in the left part of the image). As can be seen, every
query (Qp) is related to at least one class of the ontology (Ci) and one—or
more—instances (Ik).

According to the authors, in order to be compliant with the RO concept,
an ontology must fulfill the next five properties:

1. Query retrieval: The system must be able to store every query—and
subquery—performed on it as well as to return it when required.
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2. Integrity update: The system must have the faculty of actualizing the query
set, every time a new individual is added, removed, or modified within the
ontology (only in case the query contains such individual).

3. Autopoietic behavior: The system must have the capacity of self-creation
because, for every new query launched, the system will evolve (refer to
next section for further details).

4. Support of logical operators: The system must be able to handle (at least)
the following logical operators: AND, OR, and NOT.

5. Self-reasoning over the query set: This property refers to the faculty of the
system to (i) discover patterns of queries, (ii) recommend ontology refine-
ment based on the queries performed over the system, and (iii) discover
nonexplicit relationships between sets of queries.

Autopoiesis

In regards to etymology, autopoiesis means ‘‘self-creation or self-production’’
(Toro et al. 2008, p. 174). The concept was originally introduced by biologists
Maturana and Varela in 1972 and describes a system that is capable of cre-
ating, modifying, and destroying components of the system itself depending
on external perturbations. According to the definition given by Maturana and
Varela (1980),

[ . . . ] an autopoietic machine is a machine organized (defined as a unity)
as a network of processes of production (transformation and production)
of components that produces the components which, through their
interactions and transformations, continuously regenerate and realize
the network of processes (relations) that produced them [. . .] (pp. 78–79)

ROs have an autopoietic behavior because their structure is regenerated
in response to external changes such as the launching of new queries or
modification of the information stored in the ontology. Moreover, the

FIGURE 1 Schematic representation of the structure of an RO (Toro et al. 2008).
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ontology is capable of storing the history of performed queries, which, for
instance, allows knowing which parts and concepts of the ontology are
consulted more regularly.

Accordingly, the autopoietic behavior ensures the integrity of the whole
RO. When a new individual is created, modified, or removed from the
ontology, the reflexive structure is updated. The updating process consists of
modifying or generating new references to individuals for each query instance
related to the change. By creating new connections (pointers to individuals) as
a result of external perturbations, the system behaves as an autopoietic system
or organism, according to the definition given by Maturana and Varela (1980).

SYSTEM IMPLEMENTATION

Our testing system is a CDSS for the diagnosis of AD. It has been implemen-
ted within the scope of a large-scale Spanish research project aiming at the
early diagnosis of AD.

The CDSS implemented is a collaborative and multidisciplinary tool
where physicians can (1) introduce patient data and the results from clinical
tests, (2) review and edit these data at any time and location, and (3) get
support from the system to assist them during decision making about the
diagnosis of AD.

This system consists of three different modules, as presented by Sanchez
et al. (2012): (1) the ontologies module, (2) the reasoning module, and (3)
the query system. Briefly, each of these modules is described below.

Domain Ontology

Our ontology module, presented in Sanchez et al. (2011), consists of a
domain ontology defined by experts for the specific domain of the AD diag-
nostic system. Our domain ontology provides a description of the different
clinical tests carried out on patients for early detection of AD. This ontology
was implemented in OWL-DL1 and is mapped to SNOMED-CT2 and SWAN3

in order to provide, respectively, standardized terminology and bibliographic
endorsement of the knowledge and criteria embedded. Figure 2 shows the
main classes of the ontology and its relationships.

This knowledge base contains not only the classes depicted in Figure 2
and its instances but also those required for a reflexivity enhancement.

1OWL DL: Web Ontology Language (Description Logics [DL] stands for its expressiveness)
http://www.w3.org/TR/owl-guide/

2SNOMED CT: Systemized Nomenclature of Medicine Clinical Terms, http://www.ihtsdo.
org/snomed-ct/

3SWAN: Semantic Web Applications in Neuromedicine, http://www.w3.org/TR/
hcls-swan/
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Reasoning Module

The reasoning module performs a semantic reasoning process based on a set
of rules given by clinicians. As can be seen in, Figure 3 every rule contains its
own ID, a weight, the rule itself, and the corresponding bibliographic source.

In the current versionof theCDSS the setof rules contains 138 rules, although
the number may vary in the future. A rule is composed of at least two clauses: the
clause corresponding to the if part and the one corresponding to the then part; a
third one, else, is optional. A rule is said to be simple if it contains a unique clause
or complex if more than one clause are present. Connectors are logical operators
(AND, OR, and NOT) used to build more refined clauses. Every clause is formed
by four elements: (1) class, (2) property, (3) modifier, and (4) value. Figure 4
depicts the structure of a clause along with a simple example.

FIGURE 3 Partial view of a rule given by the experts (color figure available online).

FIGURE 2 Ontology of our CDSS (color figure available online).
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The first two elements are used to identify the concept of the knowledge
base that the clause refers to. The modifier is used to carry out a comparison
between the value in the knowledge base and the value specified by the rule.
A modifier may be either SMALLER_THAN, GREATER_THAN, or EQUAL_TO.

Our system uses the expert knowledge contained in the rules to infer a
diagnosis for a certain patient. In order to do so, the system must launch the
necessary queries and check whether the conditions stated by the rules are
fulfilled for that patient.

Query System

The implementation of the query system supports logical operators, accord-
ing to the fourth property stated in Toro et al. (2008). Logical operators
(AND, OR, and NOT) provide a way to combine simple queries and construct
complex queries using Boolean logic.

When a complex query is made over the ontology, the system splits the
query into simple queries. The answers to the simple or atomic queries are
retrieved and the answer to the complex query is inferred.

Figure 5 illustrates the query process that takes place in an RO-based
system.

When a query is launched over the ontology, the system checks its com-
plexity. If a complex query is made, the system splits the query into simple
queries using a query parser. Then, the system will search for simple queries
along with the original (complex) query through reflexivity instances in order

FIGURE 4 Structure of a clause.

FIGURE 5 Flow of the query process in reflexive ontologies (color figure available online).
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to check whether the queries have been made previously. If the system finds
a reflexive instance for a certain query (or a similar one if syntactic similarity
is used), its answer is retrieved directly from that instance. When the query is
not present in the ontology, a traditional query is made via a Java-compliant
API (Application Programming Interface). In addition, the query is instan-
tiated in the reflexive structure, storing its answer within that instance.

A complex query formed by three simple queries will be

Qc ¼ Q1 op Q2 op Q3; where op ¼ fAND; OR; NOTg

At the end of the querying process for Qc, the reflexive structure will
store four query instances: one for each simple query composing the query
(Q1, Q2, and Q3) and another one for the original query itself (Qc).

Autopoiesis

As seen in the previous section, the autopoietic property of an RO refers to its
ability to regenerate itself according to external perturbations. This property
is closely related to the integrity update property, because any change in the
ontology may be reflected in the reflexive structure in order to maintain data
consistency.

When an external perturbation (modification of an individual of the
ontology for instance) takes place, the system can act in different ways.
During the design and implementation process of the system, different para-
digms have been considered.

One of the paradigms is based on the detection of modified instances
and then removing the RO queries related to the class of the modified
instance. This method invalidates the whole list of related individuals that
the RO query contains; that is, a single individual penalizes the entire set.
In exchange, the computational cost of this method is relatively low.

Another approach is based on updating the list of RO queries and
modifying the list of related individuals of the corresponding RO query. In
the following pseudocode the implemented algorithm is shown (note that
the code has been considerably simplified for easier understanding):

[Precondition: The modified individual is known]
function updateROQueries(modified_individual)
f
modified_class¼ class of the modified individual
RO_queries¼ all the queries in reflexive structure

for each ROQuery in RO_queries
f
ROQuery_class¼ class of the ROQuery

if modified_class equals ROQuery_class
f

Semantic Clinical Decision Support Systems 195

D
ow

nl
oa

de
d 

by
 [

A
rk

ai
tz

 A
rt

et
xe

] 
at

 0
3:

03
 0

6 
M

ar
ch

 2
01

3 



array_individuals¼ individuals pointed by ROQuery
for each individual in array_individuals
f
if individual equals modified_individual
f

remove individual from array
if individual fulfils the condition of the query
add modified_individual to the array

g
g

g
g
g

This approach has a relatively high computational cost because it
requires performing precaching work; therefore, its use is only recom-
mended in an environment where data have limited variability.

Preliminary Work Regarding Self-Reasoning over the Query Set

In this work, a preliminary attempt was made to efficiently manage the RO
query structure by means of the implicit knowledge underlying the query
set. In this first approach we designed a method with which the query set
can be modified depending on the use made of the various classes of the
ontology.

Based on the assumption that queries are not made randomly and there-
fore follow certain patterns (recurrence in the domain), we have designed a
simple system to measure the use of each class and assign a factor accord-
ingly. For a set of queries Q¼fq1, q2, . . . , qpg and a list of existing classes
fC1, C2, . . . , Cng, a factor Fi is assigned to each class Ci depending on the
number of RO queries that refer to that class:

Ri ¼ fq 2 Q j q is related to Cig

Fi ¼
1

p
j Ri j;

where a query qi expressed formally as qi¼ (8p2Ojp# x)is related to a class
Ci if property p belongs to an instance of Ci, where O is an ontology, # is an
operator, and x is a value.

Once the factors of each class have been calculated (referred as an
occurrence factor or ôo), a threshold value can be arbitrarily established. In
case the modified individual belongs to a class with a factor lower than the
threshold, the RO query will be removed. On the other hand, if the modified
individual belongs to a class with a factor that is equal to or higher than the
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threshold (i.e., the query has been made more often), the RO query will be
updated.

However, this is still a work in progress and thereby it should be con-
sidered as a first approach to the use of implicit knowledge in the reflexive
structure. However, future work is expected to explore these techniques in
depth in order to provide more refined solutions.

EVALUATION

Methodology

For the evaluation of the results the execution time of the diagnosis process
was measured for a given number of patients. The goal was to compare the
differences in execution time between a system using a conventional
ontology and a system using an ontology enhanced with reflexivity.

The system was implemented using three different rule sets as shown
in Table 1. For each rule set the number of contained rules is shown,
along with the number of queries and the number of RO queries that
were generated inside the reflexive structure. The number of generating
query instances depends on the number of simple queries that each rule
contains.

In order to compare the differences in performance, the system was
implemented in two different ways: (1) using ROs and (2) not using ROs
(referred as no-RO).

Execution time was gathered following a methodology that is similar
to that used in knowledge base system benchmarking (Guo et al. 2004;
Ma et al. 2006; Bock et al. 2008). Nevertheless, our evaluation process
differs from other approaches because our measures are not taken from
the execution of individual queries but from the entire diagnosis process.
This fact, however, does not detract from the validity to our evaluation,
because the diagnosis process itself can be regarded as a sequence of
queries.

For testing purposes we randomly selected 10 patients who were sub-
jected to diagnostic tests in each of the system configurations. Execution time
was measured using built-in Java methods and every measurement was the
average of 10 independent executions.

TABLE 1 Size and Characteristics of the Rule Sets

Rule set
Number of

rules
Number of

queries
Generating query

instances

RuleSet 1 35 120 72
RuleSet 2 103 339 246
RuleSet 3 138 459 291
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Test Environment

We performed the experiment on a desktop Intel Core 2 Quad CPU Q8300
at 2.5 GHz� 4, 2.9 GB RAM, and Ubuntu 11.10 64-bit. The system was
developed and evaluated in Eclipse 3.7.0 with JDK version 1.6.0. Protégé
(Protégé 2007) API was used for ontology access and management.

Data and Analysis

For each of the 10 patients, the time expended on the diagnostic process was
measured in both systems: the one using reflexivity and the classical one.
Table 2 shows a complete list of the test results (execution time is shown in
milliseconds). In both systems the three rule sets shown in Table 1 were used.

Table 2 shows that, using the same rule set, execution times varied
slightly between patients. This occurred with all of the sets of rules in both
configurations; that is, using RO and no-RO. This was because the number
of queries to be performed at diagnosis time was determined by the com-
plexity of each rule in the rule set. The rule set remained constant for every
patient; thus, the queries to be performed were equal for the whole group of
patients. A preliminary analysis suggested that small variations were due to
differences in the number of clinical tests between patients.

A reduction in the execution time needed to perform the diagnosis was
evident when it comes to RO. This is shown in Figure 6 where the average
execution times are compared.

TABLE 2 Execution Times in Milliseconds

RuleSet 1 RuleSet 2 RuleSet 3

Patient 1 RO 825 1,813 2,541
no-RO 2,715 4,139 6,343

Patient 2 RO 809 1,888 2,522
no-RO 2,688 4,107 6,329

Patient. 3 RO 771 1,882 2,488
no-RO 2,788 4,100 6,290

Patient 4 RO 858 1,923 2,538
no-RO 2,752 4,165 6,298

Patient. 5 RO 972 1,932 2,553
no-RO 2,729 4,207 6,281

Patient 6 RO 772 1,869 2,637
no-RO 2,705 4,166 6,229

Patient 7 RO 827 1,831 2,615
no-RO 2,726 4,097 6,238

Patient 8 RO 878 1,989 2,524
no-RO 2,720 4,130 6,241

Patient 9 RO 767 1,976 2,436
no-RO 2,781 4,181 6,240

Patient 10 RO 785 1,886 2,537
no-RO 2,802 4,213 6,146
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Figure 6 shows the execution times corresponding to each of the rule
sets. These values were obtained by calculating the arithmetic mean of the
execution times measured for the 10 patients under consideration. The
results showed that the use of RO significantly reduced the execution times
(69.8% for RuleSet1, 54.2% for RuleSet2, and 59.4% for RuleSet3).

Comparing the execution times of both systems in relation to the
number of queries may provide valuable information. Figure 7 shows the

FIGURE 6 Average execution times.

FIGURE 7 Execution time in relation to the number of queries in the rule set (color figure
available online).
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evolution of the execution times as the number of queries to be performed
increased. The number of queries contained in the set of rules had a major
impact on the performance of both systems, because this number determined
the time required to perform the whole diagnostic process.

The chart in Figure 7 shows that the execution times for RO grew line-
arly. However, the execution times for the conventional ontology grew, if not
exponentially (three points are not enough to accurately extrapolate this
data), then still faster than RO. This means that, compared to a conventional
ontology, an RO is more robust in terms of scalability, because the execution
time grew significantly slower in relation to the number of queries.

Figure 8 shows the evolution of the execution times in relation to the
number of rules in the rule set. Although the trend was similar to that pre-
sented in Figure 7, the number of rules was not as significant as the number
of clauses they contained, because the complexity of the rules (in terms of
number of clauses) was varied. This means, for instance, that a rule contain-
ing ten clauses is equal to a rule that contains just two when the computa-
tional cost of their processing is clearly uneven.

Both charts show that the reduction in execution timewas fairly pronounced
when reflexivity was used. The difference in growth between the two smallest
sets of rules was similar, even if the growth of the conventional ontology was
about 40% greater than that of the RO. Nevertheless, the difference was more

FIGURE 8 Execution time in relation to the number of rules in the rule set (color figure
available online).
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evident when the biggest rule set was involved. Figures 7 and 8 show an increase
of more than 2,100 ms when the size of the rule set grew to 35 rules (containing
120 queries). Under the same conditions, the execution time increased 640 ms if
the ontology was enhanced with reflexivity; that is, 69.7% less.

From the obtained results, in addition to the exposed conclusions,
further information can be extracted. As presented in previous sections,
the analysis of RO queries provides valuable information such as the occur-
rence factor (ôo) of the classes. Figure 9 shows the graph of our ontology,
where both the size and color nodes refer to the occurrence factor of a class.

Taking into account that the occurrence factor is directly related to the
number of times that a class appears in a query, the larger and darker a node
is, the more often it was queried. Therefore, Figure 9 shows that the class
representing neuropsychological tests was the most frequently queried,
followed by the one representing neurological tests. This could lead to an
interesting second-order analysis of a qualitative nature, meaning that for
the example at hand the domain experts were strongly biased toward neurol-
ogy. In addition, it could be used to make interesting queries and assumptions
when one asks why some classes received fewer (or even none) queries.
Should they be removed from the knowledge model?

FIGURE 9 Graph representing MIND ontology (color figure available online).
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CONCLUSIONS

In this article we presented an implementation of the RO in a knowledge-
based CDSS for the diagnosis of Alzheimer’s disease. In order to measure
the impact of RO in the overall performance of the implemented system,
we presented a benchmark that compares two systems, one using RO and
the other using a conventional ontology.

Our comparative evaluation suggests that, in the worst-case scenario,
the performance of an RO is comparable to that of traditional ontologies. It
also shows that in our diagnosis system, the use of RO significantly improved
efficiency, reducing the execution time by almost 70% in some cases.

We presented a first approach for implementation of the reasoning over the
query set concept. It allows the extraction of knowledge about the use of different
parts of the ontology, enabling more efficient management of the queries. In
order to accomplish this, we defined an occurrence factor (ôo) as a quantitative
measurement of the recurrence of queries of certain terms in the ontology (class).

Future work will explore the design of more refined algorithms in depth
in order to extract implicit knowledge from the reflexive structure, so that the
list of RO queries can be optimized by means of precaching techniques.

Additionally, we plan to extend this work in order to evaluate the
performance of ROs in different domains and use cases. In future evaluations
we want to measure the impact (in terms of computational cost) of autopoi-
esis, so that the efficiency of the above-mentioned algorithms can be
estimated.
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