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Abstract. The efficient detection and tracking of persons in videos has
widrespread applications, specially in CCTV systems for surveillance or
forensics applications. In this paper we present a new method for people
detection and tracking based on the knowledge of the perspective infor-
mation of the scene. It allows alleviating two main drawbacks of existing
methods: (i) high or even excessive computational cost associated to mul-
tiscale detection-by-classification methods; and (ii) the inherent difficulty
of the CCTV, in which predominate partial and full occlusions as well as
very high intra-class variability. During the detection stage, we propose
to use the homograhy of the dominant plane to compute the expected
sizes of persons at different positions of the image and thus dramati-
cally reduce the number of evaluation of the multiscale sliding window
detection scheme. To achieve robustness against false positives and neg-
atives, we have used a combination of full and upper-body detectors, as
well as a Data Association Filter (DAF) inspired in the well-known Rao-
Blackwellization-based particle filters (RBPF). Our experiments demon-
strate the benefit of using the proposed perspective multiscale approach,
compared to conventional sliding window approaches, and also that this
perspective information can lead to useful mixes of full-body and upper-
body detectors.

Keywords: Object Detection, Machine Learning, Person Detection, Per-
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1 Introduction

People detection and tracking in video sequences using computer vision methods
has become a hot topic in the related scientific community due to its potential
in CCTV applications like surveillance or forensics. Significant progresses have
been made, specially in the object detection-by-classification approaches [16],
object tracking using appearance [8, 2], and also to extract semantic information
from the sequence [14, 11].

Detection-by-classification is the most promising family of techniques, using
the sliding window technique [15], which consists on exhaustively scanning the
whole image searching for objects at different scales or levels. Although this
methodology is adequate for general problems, it is too much exhaustive for



CCTV applications. On the one hand they may require low computational cost
(to analyze many video files in large installations), but on the other hand are
typically static enough to use useful prior information of the scene.

Using contextual information is a way enhance such approaches [4]. We pro-
pose to exploit the perspective information of the scene to determine the maxi-
mum and minimum expected size of persons at different locations in the images
and use them to reduce the number of levels to be used. In the context of CCTV
systems, it is broadly accepted an initial set-up or installation stage in which
prior information can be retrieved using an appropriate GUI. We have observed
that the generation of the perspective information with a GUI takes only about
1-2 minutes and might allow for significant speedups (in our experiments from
30% to 80% depending on the perspective), which can result on more video se-
quences processed with the same computer or less time to process a given video
file, and also better results in terms of false positives using the same detectors.

Most related works focus on the detection of full-body [12], upper-body [16,
10, 13], or heads [2], according to the type of targer application. We propose
to use both type of detectors and combine them using the perspective. On the
one hand, full-body detections are really distinctives when the person is seen
completely in the image. On the other hand, upper-body detections are useful
in scenarios in which partial occlusions happen.

However, using two detectors imply more computational load, and also the
necessity to handle more false positives. The use of the perspective information
help us to control these two problems. Particularly, we combine these two type
of detections so that (i) each upper-body detection generates a full-body esti-
mation; and (ii) the location of detections is projected into the plane to filter
out false positives by checking if its size is between the expected minimum and
maximum sizes of persons.

To complete our contributions, we apply a tracking approach based on the
Rao-Blackwellization Data Association Particle Filter (RBDAPF) [3] that pro-
vides the required temporal coherence to detections by linking detections through
time and generating predictions according to object appearances.

The results presented at the end of the paper demonstrate the benefits of
using the proposed approach, specially the usage of the perspective of the scene,
plus the combination of detectors in surveillance sequences (for this purpose we
have used the available dataset from Oxford Active Vision group [2]).

2 Approach overview

Figure 1 illustrates the modular architecture of the proposed approach. Details
of each module are given in the next sections. The first step is the generation of
the perspective information, that can be done offline, and it is only done once.
This information is encoded as the projection matrix P , which is composed by
the camera calibration matrix K and the relative pose of the camera, R and t
with respect to a coordinate system placed in the dominant plane of the scene.
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Fig. 1. Perspective multi-scale using detection-by-classification.

The full-body and upper-body detectors load the respective SVM models,
and the multiscale sliding window parameters are set according to the perspec-
tive. The detector then detects candidate regions of the images likely containing
full-bodies and upper-bodies. These regions are mixed (upper-bodies can be up-
graded to full-bodies using approximate human dimensions), and filtered (many
false positives are removed applying the perspective restriction which determines
the expected sizes of human beings at different positions in the image). Also, for
long sequences, conventional background substraction methods could be applied,
and only those regions which contain a certain amount of foreground pixels are
considered as valid detections (in this paper we have not included this module
because we wanted to focus on the detectors alone).

As a result, a set of detections is obtained and fed to the tracker, which as-
sociates the detections with the tracks. Entering and exiting persons or tracks
are handled by the tracker, which creates a new track when detections not asso-
ciated to existing tracks show time coherence (e.g. appear consecutively during
a number of frames), and deletes an existing track when it is not associated to
detections during a certain amount of frames.

3 Perspective Multiscale Detection

The calibration of the camera and the computation of its relative pose with
respect to the ground plane offers valuable information for the detection of per-
sons in images under the hypothesis that there is a dominant ground plane in
the scene and persons are on it. In this work we propose to formalize the ex-



ploitation of the perspective of the scene by means of computing the projection
matrix and defining a multi-scale detection approach according to it.

3.1 Perspective Multiscale

Figure 2 illustrates the difference between the typical use of multiscale sliding
window detectors and our proposed approach. The simplest way to proceed is
to run a multi-scale scanning of the image evaluating each image patch with the
classifier in order to determine the presence of objects in the image. Starting from
the smallest size, which is determined by the window size parameter of the SVM
model (e.g. 64×128 pixels for instance), L copies of the images are created, down-
scaled by a factor that is typically 1.05 or 1.1 in the hope that this exhaustive
scan will likely find small, medium and large objects; we have called this method
brute-force multiscale. The total amount of evaluations of image patches against
the SVM classifier is given by Ne =

∑L
i=1

(
Wi

s −
(

w
s − 1

)) (
Hi

s −
(

h
s − 1

))
, where

Wi × Hi is the size of the image in pixels at each level, s is the window stride,
and w × h is the size of the model. For instance, for a 1920 × 1080 image with a
64 × 128 model and s = 16, and L = 10, then Ne = 144880.

In our approach, since the projection matrix P is known, we can reproject
a human model to any position in the scene (see Figure 3) and determine the
smallest and largest sizes of it in a region of interest. Therefore we can know the
exact scale we have to apply to the multilevel scan procedure to start from the
smallest possible detections to the largest. In our experiments we have observed
that we can reduce L to 3-5 levels to achieve similar results that the brute-force
approach using L = 10. Note that the minimum number of scales we propose
to use is 2, one corresponds to the smallest person size, and the other to the
largest. Any additional scale is an intermediate scale between these two sizes.

The main difference between these alternatives is that the perspective analy-
sis of the scene focuses significantly the effort of the classifier resulting in a much
more efficient scan of the image.

3.2 Ground Plane Calibration

The calibration of the scene required to apply the proposed perspective multi-
scale approach can be obtained in a single-step process. The user must introduce
4 points in the image that corresponds to a rectangle in the ground plane of the
scene, plus the longitudinal and transversal distances between the points.

This information is enough to compute the homography H between the image
plane (in pixels) and the ground plane (in metric units) using the DLT (Direct
Linear Transform) algorithm [7].

The coordinate system in the ground plane can be selected such that it is
defined by Z = 0. In such situation, the projection of a point X = (X, Y, Z, 1)⊤

into a image point x yields:

x = K(R|t)X = K(r1 r2 r3 t )
(

X Y 0 1
)⊤ (1)



Fig. 2. Sliding window approaches: (left) Brute-force and (right) Perspective multi-
scale.

and therefore:

x = K(r1 r2 t )
(

X Y 1
)⊤ (2)

which is a 3 × 3 homography between the image and world plane points:

H = K(r1 r2 t ) (3)

As expected, the homography matrix contains all the information about the
intrinsics and extrinsics parameters of the projection process. We use the follow-
ing procedure to estimate the values of K, R and t:

First, the calibration matrix can be assumed to have 1-DoF with the principal
point as the center of the image so the only unknown is the focal length that
can be computed solving the following expression with SVD (Singular Value
Decomposition):(

h0,0h0,1 + h1,0h1,1
h2

0,0 − h2
0,1 + h2

1,0 − h2
1,1

)
x =

(
−h2,0h2,1

−h2
2,0 + h2

2,1

)
(4)

as f = ∥x0∥− 1
2 , where x0 is the first eigenvalue of x.

Second, given this initial value of K, we can calibrate the expression of the
homography:



Fig. 3. Example use of the GUI for calibrating a typical CCTV scene. The rulers and
the projected boxes help to fit the expected sizes of pedestrians.

K−1H = (p1 p2 p3 ) (5)

This way, once we have computed and calibrated the homography we can
extract the rotation and traslation from the columns of the resulting matrix.
Please note that since these are homogeneous matrices it is necessary to normal-
ize the columns of the matrix in order to get the vectors: r1 = p1

∥p1∥ , r3 = p2
∥p2∥

and r2 = r1 × r3.
Finally, we can use a refinement step that optimizes simultaneously the

reprojection error over the set of parameters given by K, R and t. We pro-
pose to use the Levenberg-Marquardt non-linear optimization method for which
many implementations can be found (e.g. lmfit-3.5, 2013, by Joachim Wuttke,
http://apps.jcns.fz-juelich.de/lmfit).

3.3 Model reprojection

The obtained projection matrix P = K[R|t] can be used to project 3D points
into the image. Therefore, we can roughly model a person (more specifically
a bounding volume around a person) as a parallelepiped and project it at the
closest and farthest point of the defined quadrilateral used for calibration. The
projection of a parallelepiped in an image is a convex polygon whose bounding
box can be easily computed and used to determine the sizes of the persons
that will configure the perspective multiscale approach. Figure 3 shows the two
projections of the box model in an image and the corresponding bounding boxes.

4 Detection

Discriminative learning methods have been used in the majority of works referred
to object and person detection. Within this kind of methods, variations of SVM
and Adaboost algorithms stand out in the literature. The main idea underlying



Fig. 4. Full-body and upper-body detectors can be combined to achieve better resutls:
(green) upper-body detections, (blue) full-body detections.

Fig. 5. The perspective can be used to filter out detections that do not represent
coherent human sizes.

the training of classifiers is to find a model which could map the input feature
vector to a set of output labels. The training stage involves the application of
supervised training algorithms to a set of feature vectors extracted from the
image database. This database must have positive images (e.g. “person”) and
negative images (e.g. “non-person”).

In this work we have used two detectors, which correspond to full-body person
and upper-body person, both using linear SVM and HOG features [5] due to its
outstanding capabilities to detect persons in images. Specifically, we have used
the Daimler full-body detector [12] available as an SVM file within OpenCV-
2.4.5, which corresponds to a dataset of approximately 25k images. For the
upper-body we have trained our own detector using a database of approximately
1k positive and negative images taken from TRECVID2013 training dataset,
which contain images from 5 different cameras. Although this dataset is not large
yet, it has been useful to comprobe that even a simple upper-body detector can
help.

The full-body detections and extended upper-bodies as full-bodies (see Fig-
ure 4) are filtered to group detections which have significant overlap. Also, the
detections are filtered according to perspective: a given detection is assumed to
correspond to a person in the ground plane, so that it can be reprojected to
that plane, and the approximate width and height can be computed. Figure 5
illustrates examples of detections filtered out.



5 Tracking

Tracking is the stage in which intra-frame detections are analyzed through time
in order to group them in time and create an inter-frame entity called track. Also,
tracking helps to alleviate the problems associated to detection-by-classification
methods. Namely, the detections tend to generate noisy, incorrect, missing, and
time sparse observations.

First, the tracking methods act as filters, so that noise can be reduced using
appropriate models (such as bivariate Gaussian models). Second, tracking meth-
ods work on a two-steps fashion: observe and predict. The observation stage reads
the observations coming from the detectors and associates them to the existing
objects. Incorrect detections are mitigated using association schemes as the one
described in the next sections. Also, missing detections can be handled using the
prediction step of the filter, in which each object, given its estimated dynamics
(e.g. velocity and acceleration) is projected onto the next frame. Therefore, the
nature of tracking methods deal well with the drawbacks imposed by detectors
and thus a combination of these two types of methods provide a good solution
for object detection in video sequences.

5.1 Rao-Blackellized Data Association Particle Filter

The RBDAPF [6] has a special structure that allows to analytically compute
the object magnitudes (positions, size, etc.) while the data associations between
tracks and detections are approximated by a sampling approach [3]. This method
defines a state vector xt = {xm

t , xa
t } at time t, where xm

t contains the 2D object
magnitudes, and xa

t = {x
a(j)
k } encodes the data associations between the tracks

and the detections. The j-th data association component relates the j-th detec-
tion with a track x

a(j)
k = id0 or with clutter x

a(j)
k = idC, where id0 is a unique

identifier of the track, and idC is the generic identifier for clutter. The mixed
and filtered full-body detections are represented by the random variable zt.

As a Bayesian inference method, the RBDAPF aims to provide an estimate
of the posterior density function. The idea of this technique is that solving an-
alytically part of the state vector, and leaving only the non-linear part to the
sampling approach gives a more accurate representation of the posterior proba-
bility. Intuitively, the variance is smaller because some variables are computed
exactly and the non-linear dimensionality is lower that the dimension of the
complete state-vector. The Rao-Blackwellization of the posterior density leads
to the following expression:

p(xt|z1:t) = p(xm
t , xa

t |z1:t) = p(xm
t |z1:t, xa

t )p(xa
t |z1:t) (6)

where p(xm
t |z1:t, xa

t ) is assumed to be conditionally linear Gaussian, and there-
fore, with an analytical expression, given by the Kalman filter.

The data association posterior density p(xa
t |z1:t) can be expressed as:

p(xa
t |z1:t) = p(zt|z1:t−1, xa

t )p(xa
t )

p(zt|z1:t−1)
(7)



where p(zt|z1:t−1, xa
t ) is the data association likelihood, p(xa

t ) is the data asso-
ciation prior, and p(zt|z1:t−1) the normalization constant.

The data association prior determines the possible associations between tracks
and detections, for which several criteria can be applied, such as: (i) each track
can be associated only with one or none of the detections; (ii) each detection can
be associated only to one track, although several detections can be associated
to the clutter object. In this work we are using as likelihood function the Eu-
clidean distance plus a constant clutter model. The data association posterior is
approximated using importance sampling [1].

5.2 Data Association Filter

In practice, the use of the RBDAPF imposes handling very carefully entering and
exiting objects. The reason is that the data association matrix is sampled using
an importance sampling algorithm, and therefore, there are many association
hypotheses, and the detections may be associated to different tracks for each
sample or hypothesis. Even in the case that the posterior distribution this way
defined shows unimodal behaviour (i.e. point-wise estimators can be applied to
the set of samples), the different history of associations between observations
and tracks at each sample is problematic at the time of considering input and
output objects. A track is labeled as exiting the scene if it is not associated
to new detections for a period of time (e.g. 5 frames). In that case, the object
is considered to have left the scene and removed from the estimation (delete
event). On the contrary, observations that are not associated to any existing
objects are initially considered as clutter (i.e. erroneous measurements). In our
work we create a new clutter object associated to that new observation just in
case it receives new observations in the subsequent frames. If this is the case
for a number of frames (e.g. 3 frames), the clutter object is upgraded to track,
and added to the list of tracks (new event). These events are related to the
history of associations and therefore each sample of the RBDAPF filter has its
own association history that might lead to different new/delete events. Although
filters like RBDAPF can be upgraded to consider samples with different numbers
of objects inside it (by means of adding a dimension that spans the number of
objects in the scene [9]), the complexity of the filter increases significantly, and
the generation of a point-wise estimate from the posterior density function might
become a tough task.

We define the Data Association Filter (DAF), which works exactly the same
as the RBDAPF but selecting only the best hypothesis (Maximum A Posterior,
MAP) during the data association step. Since this is a single sample, the point-
wise estimate can be directly retrieved from its components.

6 System Test and Discussion

To evaluate the improvements derived from the use of the proposed perspective
multiscale method we have used the TownCentre sequence made available by



the Active Vision Group from Oxford [2] (1920 × 1080, 4500 frames, with 71460
persons labeled).

We wanted to evaluate the following hypotheses: (i) using the perspective
multiscale method the optimum parameters for the detector are found automat-
ically; (ii) our approach reduces significantly the number of SVM evaluations
required to achieve similar results than brute force multiscale; (iii) using a com-
bination of full-body and upper-body detectors provide better results; (iv) per-
spective allows also filtering out numerous false positives; (v) the DAF tracking
stage helps to increase the performance of intra-frame detectors thanks to its
prediction capabilities.

First, Table 1 shows the performance of the proposed perspective multiscale
(L = 3 and L = 5) at different stages in terms of true positives (TP), false pos-
itives (FP), false negatives (FN), and the related Recall (R), Precision (P) and
F-measure. In that sense, we have defined a detection to be a TP if the overlap
it has with a ground-truth rectangle is larger than half their non-overlapping
union area (i.e. overlap is above 50%).

L = 3 L = 5
TP FP FN R P F TP FP FN R P F

FB 21521 358 49926 0.301 0.984 0.461 27725 505 43722 0.388 0.982 0.556
UB 3395 23 68052 0.048 0.993 0.091 3395 23 68052 0.047 0.993 0.091
FBUB 23339 381 48108 0.327 0.984 0.490 29075 528 42372 0.407 0.982 0.575
FBUB* 20099 239 51348 0.281 0.988 0.438 25659 307 45788 0.359 0.988 0.527
DAF 27106 503 44341 0.379 0.982 0.547 32485 642 38962 0.455 0.981 0.621

Table 1. Comparison of the performance of the different combination of detectors (FB:
full-body, UB: upper-body, FBUB: both mixed, FBUB*: mixed and filtered according
to perspective) and tracker (DAF).

As expected, the usage of UB joint with FB increases the performance of
FB alone, even when the UB by itself does not reach good values. After filtering
(FBUB*) we can see that many FP have been removed (although TP has slightly
decreased, possibly due to the elimination of detections that did not fit exactly
to the ground truth). The application of the tracker dramatically enhances these
numbers, since a significant number of FN become TP thanks to the prediction
capabilities of the filter. Better values are obtained for L = 5.

Table 2 compares the proposed scheme with the brute traditional force mul-
tiscale method with different values of levels L. We can see that the perspective
multiscale gives good values with very few levels. Actually, we have found that
the performance is stabilized at 3-5 levels, depending on the sequence, and adding
more levels shows no significant improvement while increases the number of op-
erations to carry out. Another remarkable advantage of our approach is that it
automatically determines the optimum sizes of the images inside the multiscale
pyramid. We deem this feature very practical because otherwise (with brute force



Perspective Multiscale Brute-force Multiscale
L W × H Ne R P F-measure L Ne R P F-measure
3 1920 × 1080 75929 0.03 0.08 0.05 2 33051 0.15 0.96 0.27
6 1920 × 1080 117471 0.12 0.18 0.14 3 46226 0.30 0.98 0.46
10 1920 × 1080 144880 0.47 0.48 0.48 4 60105 0.29 0.96 0.45
20 1920 × 1080 162968 0.66 0.58 0.62 5 74141 95 263 0.55

Table 2. Results of Perspective Multiscale and Brute-force multiscale

multiscale), the optimum values for L, and scale must be found by try-and-error.
For instance, Table 2 shows that for these large images, the multiscale approach
can not find good performance given the small size of the model unless using a
large number of scales. Therefore, the number of levels that best work can only
be found launching and evaluating the detector spanning different values for L
and scale which can take time and requires the existence of ground truth and
evaluation tools.

In the TownCentre video, with the perspective we have computed, the far-
thest person is represented by a 101×184 bounding box, such that using a 64×128
SVM model, the largest image to be scanned is approximately 1805×1014. There-
fore, the reduction of computational load is noteworthy: from 75929 to 46226 (a
reduction of 39%). In the case of sequences with lowest perspective, where per-
sons are not so small, (such as those in CAM1 or CAM3 of TRECVID dataset),
the gain can reach much largest values, up to 80% − 90%.

7 Conclusions

In this paper we have presented a methodology to apply contextual perspec-
tive information of the scene to traditional detection-by-classification schemes
that use sliding window scanning. The multiscale procedure typically implies
massive amounts of comparisons between windows of the image with a certain
model, resulting in variable, a priori unknown, and possibly excessive computa-
tional load to achieve good results. Our scheme automatizes the sliding window
technique, so that when the perspective information is injected into the solu-
tion, the optimum values of the parameters that govern the multiscale approach
are found. The experiments carried out show that we can get results compara-
ble to those of traditional (brute force) multiscale with only 3-5 levels, which
can lead to computational loads reduction between 30% to 80% depending on
the perspective of the scene (more reductions are achieved for images where
persons are imaged larger). The addition of a tracking stage based on the Rao-
Blacwellization concept helps as well to enhance the detection rates, since the
nature of detection-by-classification is often sparse and noisy.
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