
-1-

IMPLEMENTATION OF A COMPUTER VISION BASED ADVANCED DRIVER

ASSISTANCE SYSTEM IN TIZEN IVI

Gorka Velez, Orti Senderos, Marcos Nieto

Researchers, Vicomtech-IK4

Oihana Otaegui

Head of Intelligent Transport Systems and Engineering Unit, Vicomtech-IK4

Paseo Mikeletegi 57, 20009, Donostia-San Sebastián, Spain

Tel: +34943309230, {gvelez,osenderos,mnieto,ootaegui}@vicomtech.org

Geoffroy Van Cutsem

Senior Technical Marketing Engineer, Intel Corporation SA

Veldkant, 31, 2550 Kontich, Belgium

Tel: +3234500851, geoffroy.vancutsem@intel.com

ABSTRACT

There are many reasons for programming in Tizen: it is based on standards, is open, it has

industry support and multiple profiles. In this paper we test the potential of one this profiles:

Tizen IVI (In-Vehicle Infotainment). For this purpose, we present the implementation of two

Computer Vision based Advanced Driver Assistance Systems (ADAS) in a Tizen IVI platform: a

Lane Departure Warning (LDW) and a Driver Fatigue Detection (DFD). The results show that

both application implementations are capable of achieve a real-time performance. Moreover, the

process of porting an existing application to a native Tizen IVI application can be really smooth

if some considerations are followed.

Keywords: Advanced Driver Assistance System, Tizen, Computer Vision, Algorithm

implementation

INTRODUCTION

The Advanced Driver Assistance Systems (ADAS) market is expected to grow significantly in

the following years, from a demand of 60 million ADAS units in 2013 to a demand of more than

100 million units in 2018. The market research firm ABI Research predicts that the 60% of the

world's cars and that 80% of the North American and Western European cars will include

features like smartphone connectivity and built-in Internet in five years’ time (1). All these data

confirm the increasing importance of ADAS for the automotive industry.

Among the different options, computer vision based solutions have gained a strong foothold due

to their advantages over other type of sensors like LIDAR or radar, such as lower costs, higher

resolution or better adequacy to embedded systems and cost-effective platforms. However, the

development of an embedded vision device for ADAS is not straightforward. Several

requirements must be taken into account: real-time computational performance, low cost, small

size, low power consumption and short time-to-market. The automotive industry has proposed

-2-

different solutions to solve this problem, as it is usual on still non-mature markets. Some have

used programmable hardware to accelerate the processing of the implemented computer vision

algorithms. However, ADAS applications not only need to do image processing, but they also

need to communicate with other devices and offer a usable user interface. Developing a vision

based ADAS application in a FPGA or an ASIC is a too cumbersome task that prolongs the

developing cycle. Here we propose software solution as the best option to obtain a short

development cycle.

In the past, rigid custom built proprietary solutions dominated the market. However, these

solutions were unable to keep up with the pace of innovation of Information and

Communications Technologies (ICT). Nowadays, leading vendors are starting to develop initial

Linux based systems. Although QNX and Microsoft are still leading the market with their

proprietary operating systems (OS), Linux-based OS presence is expected to grow significantly

on the following years. Following this trend towards open source solutions, Tizen IVI appeared

as a new option for next generation in-vehicle infotainment systems built on Linux.

In order to study the potential of Tizen IVI, we have implemented two computer vision based

ADAS applications. The following three sections describe the platform, the selected applications

and their implementation. Then, the obtained results are presented and discussed. Finally, the

conclusions are explained.

PLATFORM DESCRIPTION

Software

Tizen is an open and flexible operating system built from the ground up to address the needs of

all many connected device profiles such as Smartphones, Cameras, Wearables, SmartTV, In-

Vehicle Infotainment and others. In our case we have chosen Tizen IVI (In-Vehicle

Infotainment), as it is designed specifically for the automotive market (2). More specifically, we

have used the Tizen IVI 3.0-M2-March2014 version.

Tizen IVI architecture definition is driven by requirements gathered from the automotive

industry, both directly and also via industry alliances and initiatives such as GENIVI (3) and

AGL (4). Tizen IVI is designed to control the display of the centre console as well as the backseat

screens. It can access all the car sensors and implements a strong security mechanism to isolate

control of some critical parts. It is also designed to interact and integrate with the passengers’

mobile devices. Tizen IVI is not only useful for infotainment applications, as it can also integrate

a wide range of automotive applications and services, such as ADAS, traffic management, remote

diagnosis or remote vehicle monitoring and control.

Hardware

The use of mobile phones for ADAS purposes is very tempting, as they are already familiar for

the user and they have all the necessary applications and connections configured. However the

use of mobile phones while driving can dramatically increase crash risk. On the other hand, an in-

-3-

vehicle computer based system works even when the phone does not, has more flexible inputs,

and more and better data access.

The Tizen IVI OS was finally installed on a Nexcom VTC 7120-BK computer (Figure 1). This

fanless computer is specially designed for in-vehicle applications, and features an Intel®

Celeron® Processor 847E 1.1GHz, 2GB of RAM, two high speed interface for storage, 2.5”

SATA and CFast, and several I/O options.

Figure 1 Nexcom VTC 7120-BK in-vehicle computer.

The captured images are obtained from an IDS UI-2210SE camera. This camera has a CCD

sensor from Sony which delivers a resolution of 640 x 480 pixels.

IMPLEMENTED APPLICATIONS

There are many ADAS applications that use computer vision technologies. Two of them, Lane

Departure Warning (LDW) and Driver Fatigue Detection (DFD), were chosen to be implemented

in Tizen IVI as case studies. LDW was chosen because it is a mature integrated technology

already in the market that is representative of applications based on a forward looking camera.

On the other hand, DFD was chosen because it is a not yet widely commercialized application

whose real-time implementation is far more challenging (5).

Lane Departure Warning (LDW)

The objective of a LDW application is to warn the driver for unintentional lane departures. Thus,

the solution must be able to detect and track in real-time the road’s lane markings and determine

the position of the vehicle inside its own lane. In our case, we have implemented a vision system

that uses perspective assumptions and geometric road models and that has been shown to provide

excellent results in real-time (6).

Figure 2 shows the output of the computer vision algorithm. The two white thick lines represent

the detected lanes. After the computer vision stage, there is a semantic analysis that has as a result

the information to activate or deactivate the lane departure warning signal.

-4-

Figure 2 Lane detection.

Driver Fatigue Detection (DFD)

In the implemented DFD solution, computer vision is used to determine the attention of the

driver, defining its level of drowsiness or fatigue by means of analysing biometrics like eyelid

closure, blinking speed and frequency. The application is focused on a user-based detection and

tracking of the driver eyes using paired eyes-model.

Figure 3 shows a screenshot of the DFD solution. The blue boxes define the detected eyes, and

the green boxes represent the regions of interest.

Figure 3 Driver Fatigue Detection.

IMPLEMENTATION METHOD

The Tizen platform provides two different types of frameworks for application development: the

Web framework can be used to develop HTML5/JavaScript applications, while the native

framework can be used to develop core middleware and applications. In our case we have used

the native framework to develop our two ADAS applications, as computer vision algorithms are

very performance demanding.

-5-

The whole code was written in C++ in a desktop PC with the aim of being cross-platform. It was

previously tested in Windows 7 and Ubuntu Linux, and once all the detected errors were

corrected, it was ported to Tizen IVI. For this purpose, all the code was recompiled in target

platform. In order to develop cross-platform solutions is highly recommended to use CMake. It is

used to control the software compilation process using simple platform and compiler independent

configuration files. It is designed to support directory hierarchies and applications that depend on

multiple libraries.

Figure 4 depicts the architecture and the dependencies of the implemented ADAS applications.

Both applications have the same dependencies and were developed using the Viulib software

library (7), which is a cross-platform SDK written in C++ that can be used to acquire, process

and analyse in real-time video sequences simplifying the building of complex artificial vision

applications. The rest of the dependencies can be downloaded from the Tizen repository using the

zypper in command. OpenCV is used by Viulib for some computer vision functions, Qt is used to

build the graphical interface, and FFmpeg and V4L are used by OpenCV to capture frames from

the camera.

Figure 4 Application’s dependencies.

It is worth noting that the Tizen IVI platform is better suited for serial processing, so it is

important to avoid as many operations at pixel level as possible. This includes convolution

operations, colour conversions or image resizing. In that sense, the number of image filtering

stages was minimised as much as possible in our implementations.

RESULTS

Both applications were successfully implemented in Tizen IVI. Table 1 shows the profiling times

for LDW implementation. The total computation time is 8.201 ms, which is well below the

maximum 40 ms necessary for real time. In this application each frame is processed with a

resolution of 320 x 240 pixels.

Table 1 Profiling times for LDW implementation.

Module Time (ms)

Obtain frame from camera 1.372

-6-

Image pre-processing 0.396

Lane markings detection filter 5.71

Perspective histogram 0.656

Tracking 0.046

Parameter adjustments 0.004

Semantic analysis 0.011

Total 8.201

The DFD algorithm is not so easy to profile. The processing time of each frame depends on the

scene and on driver’s behaviour. If the driver moves constantly his head, the tracking time can

increase dramatically, and at some point, the track can even get lost. Not only this, the algorithm

first attempts to detect opened eyes, and if it fails, it tries to find closed eyes. So the processing

time is bigger when the driver has the eyes closed. Additionally, if during 10 frames the

algorithm did not find any eye, it would execute a face detection algorithm in order to determine

a new region of interest. For all these reasons, and in contrast to LDW, there is no constant

execution time for DFD. However, in a normal situation where the driver is getting drowsy, his

movements are slow, so the tracking module does not need much time to track the position

changes. In this case, the variation on the processing time of each frame is not too high. In order

to test if the DFD algorithm could detect on real time if someone is getting drowsy several videos

were recorded with different people. In these videos, the head movements of the drivers were

smooth, as on real fatigued drivers. Table 2 shows the mean profiling times for the best case,

which is the most frequent. That is, when the driver has the eyes opened and they were also

detected on the previous frames. Table 3 shows the mean profiling times for the worst case, i.e.

when the driver has the eyes closed and a face detection stage is needed.

Table 2 Profiling times for DFD implementation: best case.

Module Time (ms)

Obtain frame from camera 1.372

Eye detection 3.302

Tracking 6.601

Filter tracking 0.802

Total 12.076

Table 3 Profiling times for DFD implementation: worst case.

Module Time (ms)

Obtain frame from camera 1.372

Face detection 1.342

Eye detection 7.518

Tracking 6.601

Filter tracking 0.802

Total 17.634

On both cases the total processing time is below 40 ms, which means that on normal conditions,

the algorithm runs in real time.

-7-

DISCUSSION

The proposed two ADAS application have been successfully implemented in a Tizen IVI

platform. Both application implementations were capable of achieve a real-time performance. In

our implementation methodology, we first developed and tested the applications on a desktop PC

running Ubuntu Linux. Then, we recompiled all the code in the target platform: an in-vehicle

computer running Tizen IVI. This process can be straightforward if you stick to using only

standard C++ code and you do not use any dependency that cannot be installed in Tizen IVI. In

our case, we have used our own cross-platform library, Viulib, and some other libraries that can

be downloaded from Tizen IVI repository. This repository is publicly available and contains all

the essential packages for developing ADAS applications.

ADAS software applications usually run on top of an operating system. The performance

decreases when using such an application instead of using a standalone application, but it is

absolutely worthwhile. Operating systems offer considerable savings in development time and in

maintenance of the system. Additionally, when using an operating system the programmers can

focus on the specific computer vision algorithms without having to care about other low level

details. The number of programming errors is reduced when using a higher abstraction level and

the obtained source code is more portable.

The use of an open source operating system has important advantages compared to proprietary

solutions. First of all, the development cost is lower, as there is no need for paying licensing fees.

Furthermore, the platform is publicly assessed and rated by different partners and potentially also

by academic institutions. Consequently, there is a higher confidence on the product because more

people can inspect the source code to find and fix possible vulnerabilities. Finally, automotive

suppliers can reach market faster, due to the time-saving advantage of reusable open source code.

In the particular case of Tizen, it has some other additional advantages. Tizen is backed by a large

group of industry operators and device manufacturers such as Samsung, Intel, Fujitsu, LG,

Orange or Vodafone. Moreover, as it was said before, Tizen IVI architecture definition is driven

by requirements gathered from the automotive industry, both directly and also via industry

alliances and initiatives such as GENIVI and AGL. So it can be said that it has a strong industry

support.

Tizen was designed with multiple device profiles in mind. There are currently multiple profiles

under active development: In-Vehicle Infotainment (IVI) systems, Smartphones, SmartTVs,

cameras, Smart Watches, printers… This makes Tizen a strong candidate for being de facto

standard operating system for Internet of Things implementations, which would make the

developing of ADAS applications in Tizen IVI even more attractive.

CONCLUSIONS

The process of porting an existing application to a new operating system can become a really

challenging task, especially if it was not planned previously. In order to avoid problems is

important to keep in mind that in the future the same application could run in a different system.

In that sense, using cross-platforms libraries can help in minimizing the burden of porting. In the

-8-

case of Tizen IVI, it supports many cross-platform libraries that run on Windows or on different

Linux distributions. This facilitates enormously the porting or developing of native applications

in Tizen IVI, as many of available libraries and tools are already well known.

There are many reasons for programming in Tizen: it is based on standards, is open, it has

multiple profiles and it has industry support. In this paper we present the implementation of two

computer vision based ADAS application in an in-vehicle computer that runs Tizen IVI. The

results obtained show that both application implementations are capable of achieve a real-time

performance, demonstrating the potential of this platform.

REFERENCES

(1) Ron Schneiderman, "Car makers see opportunities in infotainment, driver-assistance

systems", IEEE Signal Processing Magazine, 2013, 30(1):11–15

(2) https://wiki.tizen.org/wiki/IVI

(3) http://genivi.org/

(4) http://automotive.linuxfoundation.org/

(5) Marcos Nieto, Oihana Otaegui, Gorka Vélez, Juan Diego Ortega, Andoni Cortés, “On

creating vision-based advanced driver assistance systems”, IET Intelligent Transport Systems,

2014, DOI: 10.1049/iet-its.2013.0167

(6) Marcos Nieto, Andoni Cortés, Oihana Otaegui, Jon Arróspide, Luis Salgado, “Real-time lane

tracking using Rao-Blackwellized particle filter”, Journal of Real-Time Image Processing, 2012,

DOI: 10.1007/s11554-012-0315-0

(7) “Viulib 13.10”, http://www.vicomtech.org/viulib/

