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ABSTRACT
We present a web mining processing service that returns supervised
probabilistic classifications of Earth Observation (EO) data in tiled
form, with the aim to create user-selection based thematic maps from
remotely sensed raster imagery.

User interfaces supporting interactive navigation and model
training and tuning are implemented in open HTML5 standards,
while software interfaces among components conform to OGC
standards.

Near real time operation in the servers is attained by exploiting
efficient data structures for high dimensional indexing and search.

Index Terms— Remote Sensing, thematic mapping, web based
mapping systems, Visual Analytics

1. INTRODUCTION

While EO data lack in principle explicit semantic meaning, machine
learning / data mining algorithms can be used to generate thematic
maps from raster data and implicit semantics in the form of training.

Earth observation mining systems are the subject of current re-
search and development efforts [1, 2, 3, 4]. Classification is an foun-
dational methodology for assigning semantic labels to raster data
records [5, 6, 7, 1]. Visual Analytics methodologies are often con-
sidered for including the expert user in the loop [2, 8].

In this contribution, we build on previous work in the domain of
Earth Observation analytics and mining [9, 10].

Trying to overcome the semantic gap, we propose a proto-
type that merges near real time supervised classification tech-
niques for thematic geospatial layer generation with standard-
ized web service back-ends supporting an interactive visualiza-
tion and learning interface. We consider data available on the
Basque Country, Spain, in the Open Data Euskadi repository
(http://opendata.euskadi.net/).

In the present contribution, we use a collection of twelve image
products from an airborne platform which compose a 14080 x 9840
pixel submetric resolution map of Donostia - San Sebastian.

2. METHODOLOGICAL APPROACH

We try to improve on the state of the art by considering supervised
classification embedded in standardized tools with the aim to obtain
a efficient solution for large volumes of data.

With respect to the last point, pixel based approaches [1] require
processing very large data volumes. In this sense, to get an efficient

response to the queries, the data organization is critical. In particular,
nearest neighbor search can benefit hierarchical indexing structures.
K-d trees are space partitioning data structures for point organiza-
tion in k-dimension Euclidean spaces. They are based on sets of
hyperplanes each perpendicular to one of the axes of the coordinate
system. All nodes in the tree, including root and leaves, store a point
and a space dividing hyperplane. To find the nearest neighbors, it is
necessary to define a search scope, to determine the vicinity of the
points, once the K-d tree is built. In this work the scope is variable in
each selected pixel and depends on the definition of the target class
by the user. The key benefit is the reduction in the computational
cost to find the nearest neighbor from O(n) to O(log(n)) in the av-
erage case. This directly affects the performance when dealing with
Big Data archives.

With respect to unsupervised classification approaches [3], we
focus on including the user in the training process. An interactive
learning scheme allows a supervisor to define positive and negative
examples by interacting with a web based geovisualization interface.
As is typical in Visual Analytics methodologies, interaction events
directly influence a probabilistic model of the thematic class of in-
terest that is built on top of the K-d tree indexing structures.

Finally, we base our implementation on a strict adherence to cur-
rent web standards such as HTML5 and OGC services. In such an
environment, optimizing performance issues related to data commu-
nication and memory footprint in the client is of foremost impor-
tance. Click-and-drag operations in the client move the map view
port as is typical of HTML-based geospatial interfaces. Events that
impose an extension or a recomputation of the live area under anal-
ysis are handled by spawning new processing requests to the server.
The system configuration aims at reducing these requests to a mini-
mum, while avoiding an excessive load on the client memory.

3. IMPLEMENTED SOLUTION

We test our implementation strategy by developing a prototype
in a high-level open source scripting language, Python, to lever-
age the extensive functionality made available in packages for
N-dimensional array object management (http://www.numpy.
org), optimization, spatial data structures and efficient algorithms
(http://www.scipy.org) and image processing and graphics
(http://effbot.org/imagingbook/pil-index.htm).

The web architecture relies on the Flask micro-framework for
serving functionality (http://flask.pocoo.org/), and on
the TileStache map server for managing and serving thematic tiles
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Fig. 1: User Interface. An interactive map viewer supports super-
vised training and output presentation. A configuration panel to the
right allows the user to interactively manipulate the parameters of
the learned model.

(http://tilestache.org/). User interface operations like
zoom, drag and drop operations are made available by relying on
these libraries.

The client side is composed by a web page divided in a map
and a configuration panel. This interface allows the user interac-
tion to select pixels of the map according to the semantics of the
search. Configuration of model hyperparameters is available via
the left pane. Based on HTML standards, the communication with
the server is carried out through Asynchronous JavaScript and XML
(AJAX). This way the web web can send data to the server and re-
trieve a request from it asynchronously, in the background.

4. PROTOTYPE OPERATION

The client interface, in figure 1, is built around an interactive map
view that supports supervised training according to the semantics of
the thematic class of interest and output presentation. A configu-
ration panel presents a description of the training itself and allows
the user to interactively manipulate some parameters of the learned
model.

At start up time, the server creates tiles corresponding to the cur-
rent active area. After this, K-d trees indexes are generated for train-
ing, and the map is presented for the user interaction. The user is able
to select different training pixels according to semantic meaning of
the search, and can subsequently tune the model use for realizing the
query. To this end, the client transmits to the server the parameters
for the model. The model is used on server to analyze and process
the data: K-d tree indexes return the nearest neighbors according to
it in the form of classified tiles. When all new tiles are created, the
server returns to the client a layer identification number and loads
the new layer in the map client.

An example of returned thematic map layer can be found in fig-
ure 2. Only pixels according to the proposed training data set are
returned creating tiles.

Fig. 2: Obtained supervised single class result map after process-
ing user selected training pixels for Buildings class. Red pixels are
pixels classified as beach, black ones are not classified or undefined.

Performance Statistics Beach Vegetation Sea Building Street Bare soil

Number of pixels 11 20 14 12 8 14

Table 1: Training volume for training data set.

5. METHODOLOGICAL EVALUATION

The first obtained results appear encouraging in terms of both vi-
sual inspection and quantitative performance evaluations. To this
specific end, a test and validation area has been defined on the city
of Donostia where the Vicomtech-IK4 research center is located so
that field inspections can be used whenever necessary to verify the
obtained results. In this area we defined six principal classes of in-
terest: Buildings, Streets, Bare soil, Sea, Vegetation and Beach. In
this section we present the results obtained in the different tests.

5.1. Information retrieval performance

A training set is selected on the map for each class according to
its semantic meaning (table 1). The multi-class supervised classifi-
cation process employed composes by probability multiple implicit
single class thematic layers as the one shown in figure 2: it estimates
and minimizes a per pixel probabilistic distance to the nearest train-
ing element in either the feature or the geographic space, resulting in
a pure multiclass classification or in a multi-class classification with
a significant segmentation component related to the spatial dimen-
sion

An example map obtained from the classification and merging
process is presented in figure 3. As can be seen, a significant portion
of the output pixels remains unclassified, particularly in the top and
center with Sea class and on the bottom side with Building, Vegeta-
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Fig. 3: Multiple Layer Class Merging Result: Building (yellow),
Sea (blue), Vegetation (green), Bare soil (orange), Street (purple),
and Beach (red). A significant portion of the output pixels remains
unclassified (black).

Performance Statistics Beach Vegetation Sea Building Street Bare soil Undefined

Precision 84,98 82,92 99,7 96,49 58,27 10,72 0,0

Recall 65,72 50,52 33,84 19,36 13,8 44,71 37,5

F1 74,12 62,78 50,52 32,25 22,31 17,30 0,0

Accuracy 87,59 84,93 48,75 83,49 76,62 84,04 39,53

Table 2: Performance measures for the training data set.

tion and Street classes. We consider this to represent a feature rather
than a shortcoming in our approach. A better definition of the ground
coverage classes can be obtained by extending the training, at the
possible cost of a reduced Specificity. To obtain quantitative results
from classified pixels we develop a ground truth image against which
compare. We consider classical statistical measures of information
retrieval performance like Precision, Recall, F1 and Accuracy.

Results are shown in table 2. We consider them to be encour-
aging: while Precision values overcomes 82 percent and Accuracy
measures are around 80 percent, in most of the classes, Recall val-
ues range from about 13 percent to more than 65 percent, which
implies a decrease of the F1 values with respect to good obtained
Precision values. Receiver Operating Characteristic (ROC)analysis
is performed for each class by means of Area Under the ROC Curve
(AUC) calculation. Results shown in figure 4 are not very encourag-
ing: only the Beach class exceeds the 0.7 value.

5.2. Indexing performance

We consider classifier implementations based on two libraries ded-
icated to machine learning and data mining, Scipy [11] and Scikit-

Fig. 4: Area Under Receiver Operating Characteristic (ROC) curve
value comparative in the case of pure classification: Building (light
blue), Sea (red), Vegetation (green), Bare soil (yellow), Street (pur-
ple), and Beach (dark blue). AUC values: Building 0.715, Sea 0.549,
Vegetation 0.617, Bare soil 0.515, Street 0.454 and Beach 0.278

Performance Statistics Beach Vegetation Sea Building Street Bare soil Undefined

Precision 84,98 87,56 99,70 98,53 58,27 11,01 00,00

Recall 65,72 41,99 33,83 11,92 13,80 40,78 50,00

F1 74,12 56,76 50,52 21,27 22,31 17,34 00,00

Accuracy 87,08 83,44 47,60 81,65 75,79 84,68 37,26

Table 3: Performance measures obtained with the K-d tree with
batched query (Scikit-learn) engine for the training data set in the
case of pure classification.

learn [12]. An indexing algorithm is implemented in both libraries.
We compare classifiers built on each of them and an implementation
that foresees no indexing at all. In this last case, image pixels are
scanned one by one during the classification procedure.

For measuring the classification engine performances in terms of
processing times, we prepare two execution environments. The first
is based on a traditional laptop with an Intel(R) Core(TM) i5 650
processor model running at 3.2 GHz and the second one is based on
a notebook with Intel(R) Core(TM) i7- 4750HQ running at 2.00GHz
and SSD Hard Drive, both with 8 GB of RAM. In each environment,
we run the tests with the three indexing options.

A requirement to be able to compare different classification and
indexing engines in terms of computational cost and time is to ob-
tain comparable statistical measures of information retrieval perfor-
mance. The obtained information retrieval performance values from
the three algorithmic options are comparable, as per table 3 and per
the comparison in figure 5.

At this point a comparison of the processing times is justified.
As can be seen in table 4, the benefit of the use of indexing engine is
clear. While required time for the indexing-less classifier is almost
7 hours and 45 minutes, the required time for the K-d tree-based
implementation is around 25 minutes and the K-d tree batch query
classifier system based on Scikit-learn only requires about a minute.



Fig. 5: Comparison of K-d tree (SciPy) and K-d tree batch queries
(Scikit-learn) indexed classification obtained performance measures
by class.

Indexing
engine

i5-650 (3.2GHz)
HH:mm:ss.00

i7-4750HQ (2.0GHZ)
HH:mm:ss.00

None 07:43:36.63 06:00:35.91

K-d tree (Scipy) 00:25:43.75 00:14:21.65

K-d tree batch queries (Scikit-learn) 00:01:09.43 00:00:56.89

Table 4: Time performance measures for efficient classification. The
results are obtained by an implementation in Python, an interpreted
language. Improvement are possible by using compiled versions of
the algorithm.

This represents the 5 and the 0.2 percent respectively of the process-
ing time required by the index-less implementation.

The use of a Solid-State Drive might further improve these val-
ues.

6. CONCLUSIONS

We try to improve on existing systems for web based classification
of remote sensing data by simplifying the architecture, extending
the classification from unsupervised to supervised methods, and try-
ing to attain real time performance by exploiting n-dimensional data
indexing structures in the learning algorithm with the final aim of
allowing users to interactively navigate and semantically map large
extensions of geospatial Big Data from aerial and space-borne sen-
sors.

Results are presented from a prototype implementation of this
system. Qualitative and quantitative measures are reported for the
performance of the obtained supervised method for thematic map
definition.
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