TANDO: A Corpus for Document-level Machine Translation

Egileak: Harritxu Gete Ugarte Thierry Etchegoyhen Antonio David Ponce Martínez Gorka Labaka Nora Aranberri Ander Corral Xabier Saralegi Igor Ellakuria Maite Martín

Data: 21.06.2022


Abstract

Document-level Neural Machine Translation aims to increase the quality of neural translation models by taking into account contextual information. Properly modelling information beyond the sentence level can result in improved machine translation output in terms of coherence, cohesion and consistency. Suitable corpora for context-level modelling are necessary to both train and evaluate context-aware systems, but are still relatively scarce. In this work we describe TANDO, a document-level corpus for the under-resourced Basque-Spanish language pair, which we share with the scientific community. The corpus is composed of parallel data from three different domains and has been prepared with context-level information. Additionally, the corpus includes contrastive test sets for fine-grained evaluations of gender and register contextual phenomena on both source and target language sides. To establish the usefulness of the corpus, we trained and evaluated baseline Transformer models and context-aware variants based on context concatenation. Our results indicate that the corpus is suitable for fine-grained evaluation of document-level machine translation systems.

BIB_text

@Article {
title = {TANDO: A Corpus for Document-level Machine Translation},
pages = {3026-3037},
keywds = {
Machine Translation, Neural Machine Translation, document-level, context-aware, context
}
abstract = {

Document-level Neural Machine Translation aims to increase the quality of neural translation models by taking into account contextual information. Properly modelling information beyond the sentence level can result in improved machine translation output in terms of coherence, cohesion and consistency. Suitable corpora for context-level modelling are necessary to both train and evaluate context-aware systems, but are still relatively scarce. In this work we describe TANDO, a document-level corpus for the under-resourced Basque-Spanish language pair, which we share with the scientific community. The corpus is composed of parallel data from three different domains and has been prepared with context-level information. Additionally, the corpus includes contrastive test sets for fine-grained evaluations of gender and register contextual phenomena on both source and target language sides. To establish the usefulness of the corpus, we trained and evaluated baseline Transformer models and context-aware variants based on context concatenation. Our results indicate that the corpus is suitable for fine-grained evaluation of document-level machine translation systems.


}
isbn = {979-109554672-6},
date = {2022-06-21},
}
Vicomtech

Gipuzkoako Zientzia eta Teknologia Parkea,
Mikeletegi Pasealekua 57,
20009 Donostia / San Sebastián (Espainia)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbo (Espainia)

close overlay

Jokaeraren araberako publizitateko cookieak beharrezkoak dira eduki hau kargatzeko

Onartu jokaeraren araberako publizitateko cookieak