Physiological and performance metrics during a cardiopulmonary real-time feedback simulation to estimate cognitive load
Egileak: Blanca Larraga Verónica Ruiz Javier Rubio Manuel Quintana Álvaro Gutiérrez
Data: 01.09.2024
Displays
Abstract
Multitasking is crucial for First Responders (FRs) in emergency scenarios, enabling them to prioritize and treat victims efficiently. However, research on multitasking and its impact on rescue operations are limited. This study explores the relationship between multitasking, working memory, and the performance of chest compressions during cardiopulmonary resuscitation (CPR). In this experiment, eighteen first-year residents participated in a CPR maneuver using a real-time feedback simulator to learn chest compressions. Different additional secondary tasks were developed and accomplished concurrently with the chest compressions. Heart rate, respiration rate, galvanic skin response, body temperature, eye gaze movements and chest compression performance data were collected. The findings of this study indicated that multitasking impacted chest compression quality for all secondary tasks, showing significance (p-value < 0.05) for the frequency of the chest compressions which worsened in all cases. Additionally, vital signs such as heart rate, respiration rate, and eye gaze speed were also affected during multitasking. Nevertheless, this change on vital signs was different depending on the type of secondary task accomplished. Therefore, as a conclusion, performing multiple tasks during chest compressions affects performance. Understanding cognitive load and its impact on vital signs can aid in training FRs to handle complex scenarios efficiently.
BIB_text
title = {Physiological and performance metrics during a cardiopulmonary real-time feedback simulation to estimate cognitive load},
journal = {Displays},
pages = {102780},
volume = {84},
keywds = {
Biosignals; Cardiopulmonary resuscitation; Cognitive load; Multitasking; Performance
}
abstract = {
Multitasking is crucial for First Responders (FRs) in emergency scenarios, enabling them to prioritize and treat victims efficiently. However, research on multitasking and its impact on rescue operations are limited. This study explores the relationship between multitasking, working memory, and the performance of chest compressions during cardiopulmonary resuscitation (CPR). In this experiment, eighteen first-year residents participated in a CPR maneuver using a real-time feedback simulator to learn chest compressions. Different additional secondary tasks were developed and accomplished concurrently with the chest compressions. Heart rate, respiration rate, galvanic skin response, body temperature, eye gaze movements and chest compression performance data were collected. The findings of this study indicated that multitasking impacted chest compression quality for all secondary tasks, showing significance (p-value < 0.05) for the frequency of the chest compressions which worsened in all cases. Additionally, vital signs such as heart rate, respiration rate, and eye gaze speed were also affected during multitasking. Nevertheless, this change on vital signs was different depending on the type of secondary task accomplished. Therefore, as a conclusion, performing multiple tasks during chest compressions affects performance. Understanding cognitive load and its impact on vital signs can aid in training FRs to handle complex scenarios efficiently.
}
doi = {10.1016/j.displa.2024.102780},
date = {2024-09-01},
}