FE-simulations with a simplified model for open-cell porous materials: A Kelvin cell approach

Authors: Diego Alejandro Montoya Zapata Camilo Andrés Cortés Acosta Oscar Ruiz

Date: 01.07.2019

Journal of Computational Methods in Sciences and Engineering


Abstract

In in-silico estimation of mechanical properties of open (Kelvin) cell porous materials, the geometrical model is intractable due to the large number of finite elements generated. Such a limitation impedes the study of reasonable domains. VoXel or Boundary representations of the porous domain result in FEA data sets which do not pass the stage of mesh generation, even for very modest domains. Our method to overcome such limitations partially replaces geometrical minutiae with kinematical constraints imposed on cylindrical bars (i.e. Truss model). Our implemented method uses node position equality constraints augmented with rotation constraints at the joints. Such a method significantly reduces the computational expense of the model, allowing the study of domains of 10^3 Kelvin cells. The results of the tests executed show the accuracy and efficiency of the Truss model in the estimation of Young’s modulus and Poisson’s ratio when compared with current procedures. The method allows application for materials which depart from Kelvin Cell uniformity, since the Truss model admits general configurations. As the simulation is made possible by the Truss model, new challenges appear, such as the application to anisotropic materials and the automatic generation of the Truss model from actual foam scans (e.g. tomographies).

BIB_text

@Article {
title = {FE-simulations with a simplified model for open-cell porous materials: A Kelvin cell approach},
journal = {Journal of Computational Methods in Sciences and Engineering},
pages = {989-1000},
volume = {19},
keywds = {
computational effciency, in-silico estimation, Kelvin cell, porous materials, Poisson s ratio, Truss mode
}
abstract = {

In in-silico estimation of mechanical properties of open (Kelvin) cell porous materials, the geometrical model is intractable due to the large number of finite elements generated. Such a limitation impedes the study of reasonable domains. VoXel or Boundary representations of the porous domain result in FEA data sets which do not pass the stage of mesh generation, even for very modest domains. Our method to overcome such limitations partially replaces geometrical minutiae with kinematical constraints imposed on cylindrical bars (i.e. Truss model). Our implemented method uses node position equality constraints augmented with rotation constraints at the joints. Such a method significantly reduces the computational expense of the model, allowing the study of domains of 10^3 Kelvin cells. The results of the tests executed show the accuracy and efficiency of the Truss model in the estimation of Young’s modulus and Poisson’s ratio when compared with current procedures. The method allows application for materials which depart from Kelvin Cell uniformity, since the Truss model admits general configurations. As the simulation is made possible by the Truss model, new challenges appear, such as the application to anisotropic materials and the automatic generation of the Truss model from actual foam scans (e.g. tomographies).


}
doi = {10.3233/JCM-193669},
date = {2019-07-01},
}
Vicomtech

Parque Científico y Tecnológico de Gipuzkoa,
Paseo Mikeletegi 57,
20009 Donostia / San Sebastián (Spain)

+(34) 943 309 230

Zorrotzaurreko Erribera 2, Deusto,
48014 Bilbao (Spain)

close overlay

Behavioral advertising cookies are necessary to load this content

Accept behavioral advertising cookies